In this paper, we proposed an improved design method of critical path replica (CPR) for wide voltage design. Timing accuracy of CPR in wide operating voltage is improved by applying load matching and transistor-level static timing analysis (TSTA). We applied proposed method to 100 critical paths of iscas'95 benchmark circuits, the results of simulation experiments in SMIC 55 nm shows that the CPR designed by proposed method can operating between 0.3 V-1.2 V with only 0.25% delay error (DE).
Linear prediction is the kernel technology in speech processing. It has been widely applied in speech recognition, synthesis, and coding, and can efficiently and correctly represent the speech frequency spectrum with only a few parameters. Line Spectrum Pairs (LSPs) frequencies, as an alternative representation of Linear Predictive Coding (LPC), have the advantages of good quantization accuracy and low spectral sensitivity. However, computing the LSPs frequencies takes a long time. To address this issue, a fast computation algorithm, based on the Bairstow method for computing LSPs frequencies from linear prediction coefficients, is proposed in this paper. The algorithm process first transforms the symmetric and antisymmetric polynomial to general polynomial, then extracts the polynomial roots. Associated with the short-term stationary property of speech signal, an adaptive initial method is applied to reduce the average iteration numbers by 26%, as compared to the statics in the initial method, with a Perceptual Evaluation of Speech Quality (PESQ) score reaching 3.46. Experimental results show that the proposed method can extract the polynomial roots efficiently and accurately with significantly reduced computation complexity. Compared to previous works, the proposed method is 17 times faster than Tschirnhus Transform, and has a 22% PESQ improvement on the Birge-Vieta method with an almost comparable computation time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.