In order to realize intelligent identification of rail damage, this paper studies the extraction method of complete damage ultrasonic B-scan data based on the density-based spatial clustering of applications with noise algorithm (DBSCAN). Aiming at the problem that the traditional DBSCAN algorithm needs to manually set the Eps and Minpts parameters, a KMNN-DBSCAN (K-median nearest neighbor DBSCAN) algorithm is proposed. The algorithm first uses the dataset’s own distribution characteristics to generate a list of Eps and Minpts parameters and then determines the optimal Eps and Minpts through an optimization strategy to achieve complete self-adaptation of the two parameters of Eps and Minpts. In order to further improve the clustering performance of the algorithm, the partition idea is introduced, and the partition KMNN-DBSCAN algorithm is proposed to solve the problem that the clustering results of the DBSCAN algorithm are inconsistent with the actual categories on datasets with uneven density. The experimental results show that the KMNN-DBSCAN algorithm has higher clustering accuracy and silhouette coefficient (SC) for the D037 dataset ultrasound information group (UIG) division; compared with the KMNN-DBSCAN algorithm, the proposed partition KMNN-DBSCAN algorithm has higher clustering accuracy, F-Measure, and SC values. The partition KMNN-DBSCAN algorithm achieves accurate division of all damage UIG on the damaged B-scan data with large density differences, and completes the effective extraction of complete damage data.
Light amplification panel (LAP) based on laser principle is put forward in this paper. The LAP is coupled between the camera and eyepiece of the night vision devices to realize image intensification. The quality of imaging in low level light is gained enhancement. After analysis on principle of LAP, its gain, detection capability, imaging performance, noise and bandwidth are calculated theoretically. Laser media arranged alternately amplifies signals of different wavelength, broadening the bandwidth and also realizing night vision color imaging by physical mode.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.