TiO2nanotube arrays were fabricated in the electrolyte containing 0.25wt% NH4F, 2.5vol% water and the ethylene glycol for various hours at room temperature by anodization of Ti foil in this paper. Some anodized specimens were annealed at 450°C for 3 hours. Electrochemical Impedance Spectroscopy (EIS) was employed to measure electrochemical parameters of anodized specimens. The morphology and crystalline structure of anodized products were characterized by Field Emission Scanning Electronic Microscopy (FESEM), X-ray Diffraction (XRD) and Transmission Electronic Microscopy (TEM). A non-tube layer appears on nanotube arrays with the increase in anodization time. Anodized TiO2nanotube arrays have an amorphous structure, which transfers to anatase structure after annealing at 450°C. A new equivalent circuit R(CR(R(QR)(CR))) was proposed to fit EIS data. The results show that the charge transfer resistance at the electrode/electrolyte interface controls the electrochemical process of TiO2nanotubes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.