One-cell mouse embryos from KM strain and B6C3F1 strain were cultured in M16 medium, in which 2-cell block generally occurs. Embryos of KM strain exhibited 2-cell block, whereas B6C3F1 embryos, which are regarded as a nonblocking strain, proceeded to the 4-cell stage in our culture condition. It is often assumed that the block of early development is due to the failure of zygotic gene activation (ZGA) in cultured embryos. In this study we examined protein synthesis patterns by two-dimensional gel electrophoresis of [ 35 S] methionine radiolabeled 2-cell embryos. Embryos from the blocking strain and the nonblocking strain were compared in their development both in vitro and in vivo. The detection of TRC expression, a marker of ZGA, at 42 h post hCG in KM embryos developed in vitro suggested that ZGA was also initiated even in the 2-cell arrested embryos. Nevertheless, a significant delay of ZGA was observed in KM strain as compared with normally developed B6C3F1 embryos. At the very beginning of major ZGA as early as 36 h post hCG, TRC has already been expressed in B6C3F1 embryos developed in vitro and KM embryos developed in vivo. But for 2-cell blocked KM embryos, TRC was still not detectable even at 38 h post hCG. These evidences suggest that 2-cell-blocked embryos do initiate ZGA, and that 2-cell block phenomenon is due not to the disability in initiating ZGA, but to a delay of ZGA.
Cyclin-dependent kinase 7 (Cdk7) is the catalytic subunit of the metazoan Cdk-activating kinase (CAK). Activation of Cdk7 requires its association with a regulatory subunit, Cyclin H. Although the Cdk7/Cyclin H complex has been implicated in the regulation of RNA polymerase in several species, the precise function of their orthologs in zebrafish has not been fully elucidated. In this study, we isolated from zebrafish blastula embryos two cDNAs encoding the orthologs of human Cyclin H and Cdk7, and examined the role of Cdk7/Cyclin H in zebrafish embryogenesis. Sequence analysis showed that the zebrafish Cyclin H and Cdk7 cDNAs encode proteins with 65% and 86% identity to the respective human orthologs. RT-PCR and whole-mount in situ hybridization analyses of their expression in unfertilized eggs, embryos and organs of adult fish suggested that Cyclin H and Cdk7 messages are maternally loaded. Our data also showed that their transcripts were detected throughout development. Distribution of Cyclin H transcripts was found to be ubiquitous during early stages of development and become restricted to the anterior neural tube, brain, eyes, procreate tissues, liver and heart by 5 days post-fertilization. Expression of a dominant-negative form of Cyclin H delayed the onset of zygotic transcription in the early embryo, resulting in apoptosis at 5 hours post-fertilization and leading to sever defects in tissues normally exhibiting high levels of Cyclin H expression. These results implicate Cyclin H in the regulation of the transcriptional machinery during midblastula transition and suggest that it is an essential gene in early zebrafish larval development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.