Tetraphenylethylene nanocrystals as new ECL emitters with near-infrared aggregation-induced enhanced electrochemiluminescence exhibited high ECL efficiency and excellent biocompatibility.
The electrochemiluminescence (ECL) properties of polycyclic aromatic hydrocarbons (PAHs) are excellent on account of the high photoluminescence quantum yield. However, the poor solubility and radical instability of PAHs in the aqueous solution severely restricted further biological application. Here 9,10-diphenylanthracene (DPA) nanoblocks (NBs) with good dispersibility and stability in aqueous solution were prepared according to morphology-controlled technology employing water-soluble polymers as a protectant. Furthermore, an ECL "off-on" switch biosensor was developed based on a novel ECL ternary system with DPA NBs as luminophore, dissolved O as coreactant, and Pt-Ag alloy nanoflowers as the coreaction accelerator, which achieved a high-intense initial ECL signal. Subsequently, the Fc-DNA as ECL signal quencher was assembled on the electrode surface to quench the initial ECL signal for a "signal-off" state. Meanwhile, DNA swing arm was modified on the electrode surface for one-step DNA walker amplification. Interestingly, in the presence of miRNA-141 and T7 Exo, the one-step DNA walker amplification was executed to recover a strong ECL signal as a "signal-on" state by the digestion of Fc-DNA. Thus the developed ECL "off-on" switch biosensor possesses a detection limit down to 29.5 aM for ultrasensitive detection of miRNA-141, which is expected to be applicable to the detection of miRNA in clinic tumor cells.
As the only endogenous coreactant in the electrochemiluminescence (ECL) system, the dissolved O was the ideal candidate due to the mild reaction and easy operation, but compared to SO, the dissolved O with weaker redox activity suffers from the poor enhancement effect of the luminophore, which restricted the further application in bioanalysis. Here, a high-intense ECL signal was gained by the employing of Pt nanomaterials as a coreaction accelerator to generate more of the intermediate of dissolved O to promote the coreaction efficiency. On the basis of a new ternary ECL system of Pt nanomaterials as the coreaction accelerator, dissolved O as the coreactant, and a neotype rubrene microrods as the luminophore, an efficient "on-off-on" solid-state ECL switch platfrom was designed for ultrasensitive microRNA (miRNA) detection with a background reduction strategy of ferrocene-labeled single-stranded DNA (Fc-DNA) as a quencher. In the presence of miRNA 141, the Pt nanoparticles labeled hairpin (HP1/PtNPs) was opened to produce plenty of Pt nanoparticles labeled output DNA (S1/PtNPs) and release the miRNA-141 to participate in the next cycle. Then, the S1/PtNPs were captured on the surface of the electrode by the complementary strand to obtain the super "signal on" state with extremely high ECL signal. This novel solid-state ECL platform exhibited excellent sensitivity from 10 aM to 100 pM with a detection limit of 2.1 aM, which provided a new approach for ultrasensitive ECL bioanalysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.