Assembly quality of aero-engine casing plays a key role in the whole aero-engine, since it is directly related to the final function and dynamic performance. However, during the design phase, the tolerance analysis is usually conducted independently without any consideration of the effect on the dynamic characteristic. This paper aims to integrate manufacturing precision with dynamic performance instability together. First, the 3-D tolerance model of the aero-engine casing is constructed based on the Jacobian-Torsor theory. The target deviation from the tolerance model is defined as the input variable into the vibratory governing equation. Then, the effect of 3-D assembly deviation on the natural frequency is studied. The corresponding frequency distributions for different vibration modes are illustrated. Finally, the mapping relationship between assembly tolerance and fluctuation ratio of natural frequency is established through the 3-D fitted surface. Under the given constraint of performance stability, the optimized tolerance zone is obtained. This work provides a significant guidance for performance improvement and tolerance design in the aero-engine casing assembly.
In the past decades, several compliant assembly analysis models have been developed to consider structural deformations during assembly progresses. Available methods address the influence of linear elastic deformations, whereas for the case of large-scale flexible structures with complex boundary conditions, the geometric nonlinearity will be a significant factor affecting the accuracy of assembly variation prediction. This paper introduces a refined mechanical model to develop a variation analysis method for beam structures. Based on the Timoshenko theory, governing equations of flexible beam are obtained by using the principle of virtual work with consideration of initial deviations and a von Kármán type of kinematic nonlinearity. Moreover, corresponding finite element formulas are presented, which also can be degenerated into non-initial deviation form or the linearized form. With the nonlinear beam model, an assembly variation analysis method is proposed for beam structures, which takes initial deviations, fixture errors, and matching deviations into account. Case studies of static loading analysis and slender beam assembly springback analysis are demonstrated to verify the feasibility and accuracy of the presented method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.