This paper summarizes the research results of the structural parameters which have effects on the performance of Savonius wind turbine. Savonius wind turbine being used in wind power and tidal power belongs to vertical axis wind turbine (VAWT). Recently, more and more research have placed on it for its advantages such as: being able to accept wind from any direction, long fatigue life of the blades, high starting torque, wide working wind speed range, easy to install, manufacture and maintain and low noise etc. The performance of Savonius wind turbine is affected by many factors. Different structural parameters can bring huge differences in turbine performance. Especially the differences in the maximum wind energy utilization (Cp-max) can be more than 30% with different structure. Many new turbines get higher Cp-max by improving the structural parameters. In this paper, the structural improvement information of Savonius wind turbine is summarized in order to provide useful knowledge for the researchers in the structural design and improvement.
In order to enhance the efficiency of the Savonius rotor, this paper designs a new type of Savonius rotor with a rectifier. By using Computational Fluid Dynamics software to simulate and optimize the various parameters which affect the efficiency of the rotor. The sliding mesh method is applied here. The Cp-λ curves of wind turbine with different structural parameters are obtained after numerical simulation of flow field. On this basis, this paper gets the optimal structural parameters. And the results indicated that this new type of Savonius rotor has great improvement of efficiency compared with the traditional Savonius-type rotor.
The effects of the supply voltage, water flow rate, concentration of H2O2absorption and flue gas flow rate on NO removal rate were studied. The chemical reaction mechanism of NO removal was discussed. It was concluded that the NO removal rate increased the increasing of supply voltage, water flow rate and concentration of H2O2, and decreased with the increasing of the flue gas flow rate on the experimental conditions. On the synergy with corona discharge and H2O2solution oxidation, NO removal rate reached 60.2%.
This paper analyzed the advantages of traditional Savonius (S-type) turbine and the reasons of its low efficiency, proposed a new type of turbine with self-rotating blades and surrounded by a rectifier, and studied the aerodynamic performance by numerical simulations. The turbine is composed of a rectifier and a rotor, the rectifier consists by straight and arc segments which can accelerate the wind speed and adjust the inflow wind angle. The self-rotating blade can reduce the impacted area acting on the leeward blade by wind and arm of the impact torque, therefore reduces the resistant torque of the blade, and the driving torque acting on the windward blade is almost the same with traditional S-type turbine, which can increase the overall driving torque. The result shows that the new turbine has the advantages as below: wide range of wind speed for effective working, high power coefficient (Cp), suitable for low wind speed aera etc. Although the flow field in S-type turbine is complex separating flow, the performance of the turbine proposed in this paper is improved and is better than traditional S-type turbine in numerical simulation which is worth for spreading.
The energy issue has been the focus of world’s attention. Wind plays a crucial role in the development and application of new energy as a renewable and clean energy. Wind turbine is the core component of the wind power system. It usually can be divided into horizontal axis wind turbine (HAWT) and vertical axis wind turbine (VAWT) by the relative position of the spindle and the ground. This paper analyzes the advantages and disadvantages of VAWT and summarizes the improvement of the VAWT from the energy congregating technology and self-starting technology which can provide technical support for the research of VAWT in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.