Processing-in-memory (PIM) is a promising architecture to design various types of neural network accelerators as it ensures the efficiency of computation together with Resistive Random Access Memory (ReRAM). ReRAM has now become a promising solution to enhance computing efficiency due to its crossbar structure. In this paper, a ReRAM-based PIM neural network accelerator is addressed, and different kinds of methods and designs of various schemes are discussed. Various models and architectures implemented for a neural network accelerator are determined for research trends. Further, the limitations or challenges of ReRAM in a neural network are also addressed in this review.
With the swift development of deep learning applications, the convolutional neural network (CNN) has brought a tremendous challenge to traditional processors to fulfil computing requirements. It is urgent to embrace new strategies to improve efficiency and diminish energy consumption. Currently, diverse accelerator strategies for CNN computation based on the field-programmable gate array (FPGA) platform have been gradually explored because they have edges of high parallelism, low power consumption, and better programmability. This paper first illustrates state-of-the-art FPGA-based accelerator design by emphasizing the contributions and limitations of existing research works. Subsequently, we demonstrated significant concepts of parallel computing (PC) in the convolution algorithm and discussed how to accomplish parallelism based on the FPGA hardware structure. Eventually, with the proposed CPU+ FPGA framework, we performed experiments and compared the performance against traditional computation strategies in terms of the operation efficiency and energy consumption ratio. The results revealed that the efficiency of the FPGA platform is much higher than that of the central processing unit and graphics processing unit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.