Novel classes of pain-relieving molecules are needed to fill the void between nonsteroidal anti-inflammatory agents and narcotics. Our studies have identified superoxide as a novel mediator of hyperalgesia (clinically defined as an augmented sensitivity to painful stimuli) and have exposed potential pathways through which this radical modulates the hyperalgesic response. The role of superoxide in pain was elucidated using a superoxide dismutase mimetic, M40403 [a manganese(II) complex with a bis(cyclo-hexylpyridine-substituted) macrocyclic ligand]. Intraplantar injection of carrageenan in rats led to timedependent development of peripheral inflammation [measured parameters of inflammation included paw edema, cytokine release in the paw exudates, nitrotyrosine formation (a marker of peroxynitrite formation and oxidative stress), and poly-ADPribose-polymerase activation (the nuclear enzyme activated by superoxide/peroxynitrite)] and hyperalgesia. M40403 blocked all measured parameters of inflammation and hyperalgesia. Furthermore, when given therapeutically (2 h after the induction of hyperalgesia) either by intravenous or intrathecal administration, M40403 but not its inactive congener M40404 inhibited hyperalgesia with a rapid onset of action. Our results also show that, at the level of the spinal cord and time of peak hyperalgesia, endogenous manganese superoxide dismutase was nitrated and subsequently deactivated, losing its capacity to remove superoxide. The antihyperalgesic effects of M40403 were not reversed by naloxone excluding the potential involvement of an opiate pathway. Collectively, these studies have unraveled a critical role for superoxide in the nociceptive signaling cascade both peripherally and centrally. The discovery of this pathway opens a new therapeutic strategy for the development of novel nonnarcotic antihyperalgesic agents.
Many human diseases are associated with the overproduction of oxygen free radicals that inflict cell damage. A manganese(II) complex with a bis(cyclohexylpyridine)-substituted macrocyclic ligand (M40403) was designed to be a functional mimic of the superoxide dismutase (SOD) enzymes that normally remove these radicals. M40403 had high catalytic SOD activity and was chemically and biologically stable in vivo. Injection of M40403 into rat models of inflammation and ischemia-reperfusion injury protected the animals against tissue damage. Such mimics may result in better clinical therapies for diseases mediated by superoxide radicals.
The list of pathophysiological conditions associated with the overproduction of superoxide expands every day. Much of the knowledge compiled on the role of this radical in disease has been gathered using the native superoxide dismutase enzyme and, more recently, by the use of superoxide dismutase knockout models or transgenic models that overexpress the various isoforms of the enzyme. Although the native enzyme has shown promising anti‐inflammatory properties in both preclinical and clinical studies, there were drawbacks and issues associated with its use as a therapeutic agent and pharmacological tool. Based on the concept that removal of superoxide modulates the course of inflammation, synthetic, low‐molecular‐weight mimetics of the superoxide dismutase enzymes that could overcome some of the limitations associated with the use of the native enzyme have been designed. In this review, we will discuss the advances made using various superoxide dismutase mimetics that led to the proposal that superoxide (and/or the product of its interaction with nitric oxide, peroxynitrite) is an important mediator of inflammation, and to the conclusion that superoxide dismutase mimetics can be utilized as therapeutic agents in diseases of various etiologies. The importance of the selectivity of such compounds in pharmacological studies will be discussed.
British Journal of Pharmacology (2003) 140, 445–460. doi:
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.