Bacterial biofilms represent an essential part of Earth's ecosystem that can cause multiple ecological, technological and health problems. The environmental resilience and sophisticated organization of biofilms are enabled by the extracellular matrix that creates a protective network of biomolecules around the bacterial community. Current anti-biofilm agents can interfere with extracellular matrix production but, being based on small molecules, are degraded by bacteria and rapidly diffuse away from biofilms. Both factors severely reduce their efficacy, while their toxicity to higher organisms create additional barriers to their practicality. In this paper we report on the ability of graphene quantum dots to effectively disperse mature amyloid-rich Staphylococcus aureus biofilms, interfering with the self-assembly of amyloid fibers-a key structural component of the extracellular matrix. Mimicking peptide-binding biomolecules, graphene quantum dots form supramolecular complexes with phenol soluble modulins, the peptide monomers of amyloid fibers.
Rational design supporting material for palladium (Pd)-based catalyst can maximize its electrocatalytic performance for ethanol oxidation reaction (EOR) catalyst in alkaline condition. Utilizing the unique two-dimensional structures and outstanding physicochemical property of graphene and black phosphorus (BP), herein, we proposed and designed a black phosphorus–graphene heterostructure for supporting Pd nanoparticles. Through merely ball-milling of activated graphene (AG) and black phosphorus (BP), the AG–BP hybrid with a linkage of P–C bonding is used as supports of Pd. The obtained Pd/AG–BP hybrid exhibits ultrahigh electrochemical activity toward EOR. Remarkably, it can achieve a high mass peak current density of ∼6004.53 and ∼712.03 mA mgPd –1 before and after the durability tests of 20 000s on EOR, which are ∼7.19 and 80 times higher than those of commercial Pd/C. The experimental analysis and density-functional-theory calculation show that Pd becomes more positive with electrons transfer from Pd to AG–BP supports and is liable to absorb the OH radicals for removing COads intermediate to release active sites on EOR, together with the excellent ability to generate additional OH militants after combining with the AG–BP heterostructure.
Caenorhabditis elegans that hatch in the absence of food stop their postembryonic development in a process called L1 arrest. Intriguingly, we find that the postembryonic Q neuroblasts divide and migrate during L1 arrest in mutants that have lost the energy sensor AMP-activated protein kinase (AMPK) or the insulin/IGF-1 signaling (IIS) negative regulator DAF-18/PTEN. We report that DBL-1/BMP works upstream of IIS to promote agonistic insulin-like peptides during L1 arrest. However, the abnormal Q cell divisions that occur during L1 arrest use a novel branch of the IIS pathway that is independent of the terminal transcription factor DAF-16/FOXO. Using genetic epistasis and drug interactions we show that AMPK functions downstream of, or in parallel with DAF-18/PTEN and IIS to inhibit PP2A function. Further, we show that PP2A regulates the abnormal Q cell divisions by activating the MPK-1/ERK signaling pathway via LIN-45/RAF, independently of LET-60/RAS. PP2A acts as a tumor suppressor in many oncogenic signaling cascades. Our work demonstrates a new role for PP2A that is needed to induce neuroblast divisions during starvation and is regulated by both insulin and AMPK.
Metal nanostructures of chiral geometry interacting with light via surface plasmon resonances can produce tailorable optical activity with their structural alterations. However, bottom-up fabrication of arbitrary chiral metal nanostructures with precise size and morphology remains a synthetic challenge.Here we develop a DNA origami-enabled aqueous solution metallization strategy to prescribe the chirality of silver nanostructures in three dimensions. We find that diamine silver(I) complexes coordinate with the bases of prescribed singlestranded protruding clustered DNA (pcDNA) on DNA origami via synergetic interactions including coordination, hydrogen bonds, and ion−π interaction, which induce site-specific pcDNA condensation and local enrichment of silver precursors that lowers the activation energy for nucleation. Using tubular DNA origami-based metallization, we obtain helical silver patterns up to a micrometer in length with well-defined chirality and pitches. We further demonstrate tailorable plasmonic optical activity of metallized chiral silver nanostructures. This method opens new pathways to synthesize programmable inorganic materials with arbitrary morphology and chirality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.