Beth Payne and colleagues use a risk prediction model, the Pre-eclampsia Integrated Estimate of RiSk (miniPIERS) to help inform the clinical assessment and triage of women with hypertensive disorders of pregnancy in low-resourced settings.
Please see later in the article for the Editors' Summary
The fullPIERS (Pre-eclampsia Integrated Estimate of RiSk) model is a promising tool for the prediction of adverse outcomes in pre-eclampsia, developed using the worst values for predictor variables measured within 48 hours of admission. We reassessed the performance of fullPIERS using predictor variables obtained within 6 and 24 hours of admission, and found that the stratification capacity, calibration ability, and classification accuracy of the model remained high. The fullPIERS model is accurate as a rule-in test for adverse maternal outcome, with a likelihood ratio of 14.8 (95% CI 9.1-24.1) or 17.5 (95% CI 11.7-26.3) based on 6-and 24-hour data, respectively, for the women identified to be at highest risk (predicted probability ‡30%).
Objective: We sought to determine the role of respiratory assessment by cardiorespiratory symptoms and/or oxygen saturation by pulse oximetry (SpO 2 ) in predicting adverse maternal outcomes in women admitted to hospital with preeclampsia .Methods: These data derive from an international, prospective multicentre cohort study, PIERS (Pre-eclampsia Integrated Estimate of RiSk), which assesses predictors of adverse outcomes in women admitted to tertiary perinatal units with preeclampsia . Univariate and multivariate analyses of cardiorespiratory symptoms and pulse oximetry were performed to assess their ability to predict a combined adverse maternal outcome developed through international Delphi consensus .Results: SpO 2 successfully predicted adverse maternal outcomes; the area under the receiver-operator characteristic curve (AUC ROC) was 0 .71 (95% CI 0 .65 to 0 .77) . Combining the symptoms of chest pain and/or dyspnea with pulse oximetry improved this predictive ability (AUC ROC 0 .73; 95% CI 0 .67 to 0 .78) . When SpO 2 was stratified into risk groups using inflection points on the ROC curve, the highest risk group (SpO 2 90% to 93%) had an odds ratio of 18 .1 (95% CI 8 .2 to 40 .2) for all outcomes within 48 hours when compared with the baseline group (SpO 2 98% to 100%) .
Conclusion:Assessing SpO 2 aids in the assessment of maternal risk in women admitted to hospital with preeclampsia . An SpO 2 value of ≤ 93% confers particular risk . The symptom complex of chest pain and/or dyspnea adds to the association .
RésuméObjectif : Nous avons cherché à déterminer le rôle de l'évaluation respiratoire en fonction des symptômes cardiorespiratoires et/ou celui de la détermination de la saturation en oxygène par oxymétrie pulsée (SaO 2 ) dans la prédiction des issues maternelles indésirables chez les femmes hospitalisées en raison d'une prééclampsie .
Méthodes :Ces données sont issues de l'étude de cohorte multicentrique prospective internationale PIERS (Pre-eclampsia Integrated Estimate of RiSk), laquelle a évalué les facteurs prédictifs des issues indésirables chez les femmes admises dans des unités périnatales tertiaires en raison d'une prééclampsie . Des analyses univariées et multivariées des symptômes cardiorespiratoires et de l'oxymétrie pulsée ont été menées pour en évaluer la capacité de prédire une issue maternelle indésirable combinée, élaborée par consensus Delphi international .Résultats : La SaO 2 a permis de prédire avec succès les issues maternelles indésirables; la surface sous la courbe de la fonction d'efficacité de l'observateur-opérateur (AUC ROC) était de 0,71 (IC à 95 %, 0,65 -0,77) . Le fait de combiner les symptômes de la douleur thoracique et/ou de la dyspnée à l'oxymétrie pulsée a entraîné l'amélioration de cette capacité de prédiction (AUC ROC, 0,73; IC à 95 %, 0,78
Maternal symptoms of preeclampsia are not independently valid predictors of maternal adverse outcome. Caution should be used when making clinical decisions on the basis of symptoms alone in the preeclamptic patient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.