Low-temperature oxidation of CO, perhaps the most extensively studied reaction in the history of heterogeneous catalysis, is becoming increasingly important in the context of cleaning air and lowering automotive emissions. Hopcalite catalysts (mixtures of manganese and copper oxides) were originally developed for purifying air in submarines, but they are not especially active at ambient temperatures and are also deactivated by the presence of moisture. Noble metal catalysts, on the other hand, are water tolerant but usually require temperatures above 100 degrees C for efficient operation. Gold exhibits high activity at low temperatures and superior stability under moisture, but only when deposited in nanoparticulate form on base transition-metal oxides. The development of active and stable catalysts without noble metals for low-temperature CO oxidation under an ambient atmosphere remains a significant challenge. Here we report that tricobalt tetraoxide nanorods not only catalyse CO oxidation at temperatures as low as -77 degrees C but also remain stable in a moist stream of normal feed gas. High-resolution transmission electron microscopy demonstrates that the Co(3)O(4) nanorods predominantly expose their {110} planes, favouring the presence of active Co(3+) species at the surface. Kinetic analyses reveal that the turnover frequency associated with individual Co(3+) sites on the nanorods is similar to that of the conventional nanoparticles of this material, indicating that the significantly higher reaction rate that we have obtained with a nanorod morphology is probably due to the surface richness of active Co(3+) sites. These results show the importance of morphology control in the preparation of base transition-metal oxides as highly efficient oxidation catalysts.
Copper nanoparticles dispersed rod-shaped La 2 O 2 CO 3 efficiently catalyzed transfer dehydrogenation of primary aliphatic alcohols with an aldehyde yield of up to 97%. This high efficiency was achieved by creating a catalytically active nanoenvironment for effective reaction coupling between alcohol dehydrogenation and styrene hydrogenation via hydrogen transfer. The {110} planes on the La 2 O 2 CO 3 nanorods not only provided substantial amounts of medium-strength basic sites for the activation of alcohol but also directed the selective dispersion of hemispherical Cu particles of about 4.5 nm on their surfaces, which abstracted and transferred hydrogen atoms for styrene hydrogenation. This finding provides a new strategy for developing highly active alcohol-dehydrogenation catalysts by tuning the shape of the oxide support and consequently the metal-oxide interfacial nanostructure.
Developing ultra-high strength in rare-earth-free Mg alloys using conventional extrusion process is a great challenge. What is even more difficult is to achieve such a goal at a lower processing cost. In this work, we report a novel low-alloyed Mg-2Sn-2Ca alloy (in wt. %) that exhibits tunable ultra-high tensile yield strength (360e440 MPa) depending on extrusion parameters. More importantly, there is little drop in mechanical properties of this alloy even when it is extruded at a speed several times higher than those used in the reported high strength Mg alloys. Examination of as-extruded microstructures of this Cacontaining Mg alloy reveals that the ultra-high strength is mainly associated with the presence of surprisingly submicron matrix grains (down to~0.32 mm). The results suggest that the Ca addition promotes accumulations of the pyramidal dislocations, which eventually transform into the low angular grain boundaries (LAGBs). The high number density of LAGBs separate the a-Mg matrix via either discontinuous dynamic recrystallization (DDRX) mechanism in the early stage or the continuous dynamic recrystallization (CDRX) mechanism in the later stage of extrusion, which effectively enhances the nucleation rates of the DRXed grains. More importantly, large amount of Ca segregation along LAGBs, accompanied with dynamically precipitated Mg 2 Ca nano-phases, are detected in the present nonseverely deformed samples. It is the combination of solute segregations and numerous Mg 2 Ca nanoprecipitates that contributes to the formation of the ultra-fine grains via pinning mechanism. The ultrafine grains size, Ca enrichment in most LAGBs, and residual Mg 2 Ca nano-precipitates would in turn contribute significantly to the enhancement of the yield strength of the as-extruded Mg-2Sn-2Ca (wt.%) alloy. The low content of alloying elements and the fast one-step extrusion process render the present alloys low-cost and thus have great potential in large-scale industry applications.
Cobalt hydroxycarbonate nanorods are prepared by precipitation of cobalt acetate with sodium carbonate in ethylene glycol. Structural and chemical analyses of the intermediate phases during the precipitation and aging process revealed that amorphous cobalt hydroxide acetate is formed at the initial stage where ethylene glycol acts as a simple solvent and a coordinating agent. With the slow addition of sodium carbonate, carbonate anions are gradually intercalated into the interlayers by replacing the acetate and hydroxyl anions. This anionexchange process induces a dissolution-recrystallization process in which ethylene glycol serves as a ratecontrolling agent, producing rod-like cobalt hydroxide carbonate. During the aging process, ethylene glycol gradually incorporates into the structure to replace the carbonate and acetate anions; the interlayer structure is collapsed, and the nanorod-shape turns into thin crimped sheets. Co 3 O 4 nanorods with a diameter of about 10 nm and a length of 200-300 nm are then obtained by calcination of the nanorod-shaped cobalt hydroxycarbonate precursor. This spontaneous shape transformation from the precursor to the oxide is attributed to the unique thermal stability of the cobalt hydroxycarbonate nanorods with the presence of ethylene glycol and acetate anions in the interlayers. The Co 3 O 4 nanorods show a much superior catalytic activity for CO oxidation to the conventional spherical Co 3 O 4 nanoparticles, clearly demonstrating the morphology-dependent nanocatalysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.