Abstract. Osteosarcoma (OS) is the most commonly diagnosed tumor of the bones in children and young adults. Even with conventional therapies the 5-year survival rate is ~65% in patients with OS. Considering the side effects and aggressiveness of malignant bone tumors, research is focussing on multi-targeted strategies in treatment. Cucurbitacin B, a triterpenoid compound has been demonstrated to induce apoptosis in various cancer cell types. The Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) signalling cascades and mitogen activated protein kinases (MAPK) signalling cascades are critical regulators of tumorigenesis. The present study assessed the influence of cucurbitacin B on the viability and expression of MAPKs and proteins of the JAK2/STAT3 cascades in human OS cells (U-2 OS). Cucurbitacin B (20-100 µM) significantly reduced cell viability (P<0.05) and induced apoptosis, as assessed by MTT and Annexin V/propidium iodide staining, along with inhibiting cell migration. Gelatin zymography revealed supressed activities of matrix metalloproteinase (MMP-)2 and 9. Furthermore, cucurbitacin B effectively upregulated the apoptotic pathway and caused the effective inhibition of MAPK signalling and JAK2/STAT3 cascades. Multifold suppression of vascular endothelial growth factor by cucurbitacin B was also observed, indicating inhibition of angiogenesis. Thus, by downregulating major pathways-MAPK and JAK2/STAT3 and MMPs, cucurbitacin B has potent anti-proliferative and anti-metastatic effects that require further investigation with regards to cancer treatment.
The primary aim of the present study was to examine the effects of microRNA‑21 (miR‑21) on the proliferation and differentiation of rat primary neural stem cells (NSCs) in vitro. miR‑21 was overexpressed in NSCs by transfection with a miR‑21 mimic. The effects of miR‑21 overexpression on NSC proliferation were revealed by Cell Counting kit 8 and 5‑ethynyl‑2'‑deoxyuridine incorporation assay, and miR‑21 overexpression was revealed to increase NSC proliferation. miR‑21 overexpression was confirmed using reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR). mRNA and protein expression levels of key molecules (β‑catenin, cyclin D1, p21 and miR‑21) in the Wnt/β‑catenin signaling pathway were studied by RT‑qPCR and western blot analysis. RT‑qPCR and western blot analyses revealed that miR‑21 overexpression increased β‑catenin and cyclin D1 expression, and decreased p21 expression. These results suggested that miR‑21‑induced increase in proliferation was mediated by activation of the Wnt/β‑catenin signaling pathway, since overexpression of miR‑21 increased β‑catenin and cyclin D1 expression and reduced p21 expression. Furthermore, inhibition of the Wnt/β‑catenin pathway with FH535 attenuated the influence of miR‑21 overexpression on NSC proliferation, indicating that the factors activated by miR‑21 overexpression were inhibited by FH535 treatment. Furthermore, overexpression of miR‑21 enhanced the differentiation of NSCs into neurons and inhibited their differentiation into astrocytes. The present study indicated that in primary rat NSCs, overexpression of miR‑21 may promote proliferation and differentiation into neurons via the Wnt/β‑catenin signaling pathway in vitro.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.