BackgroundGastric cancer (GC) is a common malignancy and frequent cause of cancer-related death. Long non-coding RNAs (lncRNAs) have emerged as important regulators and tissue-specific biomarkers of multiple cancers, including GC. Recent evidence has indicated that the novel lncRNA LINC01133 plays an important role in cancer progression and metastasis. However, its function and molecular mechanism in GC remain largely unknown.MethodsLINC01133 expression was detected in 200 GC and matched non-cancerous tissues by quantitative reverse transcription PCR. Gain- and loss-of-function experiments were conducted to investigate the biological functions of LINC01133 both in vitro and in vivo. Insights into the underlying mechanisms of competitive endogenous RNAs (ceRNAs) were determined by bioinformatics analysis, dual-luciferase reporter assays, quantitative PCR arrays, TOPFlash/FOPFlash reporter assay, luciferase assay, and rescue experiments.ResultsLINC01133 was downregulated in GC tissues and cell lines, and its low expression positively correlated with GC progression and metastasis. Functionally, LINC01133 depletion promoted cell proliferation, migration, and the epithelial–mesenchymal transition (EMT) in GC cells, whereas LINC01133 overexpression resulted in the opposite effects both in vitro and in vivo. Bioinformatics analysis and luciferase assays revealed that miR-106a-3p was a direct target of LINC01133, which functioned as a ceRNA in regulating GC metastasis. Mechanistic analysis demonstrated that miR-106a-3p specifically targeted the adenomatous polyposis coli (APC) gene, and LINC01133/miR-106a-3p suppressed the EMT and metastasis by inactivating the Wnt/β-catenin pathway in an APC-dependent manner.ConclusionsOur findings suggest that reduced expression of LINC01133 is associated with aggressive tumor phenotypes and poor patient outcomes in GC. LINC01133 inhibits GC progression and metastasis by acting as a ceRNA for miR-106a-3p to regulate APC expression and the Wnt/β-catenin pathway, suggesting that LINC01133 may serve as a potential prognostic biomarker and anti-metastatic therapeutic target for GC.Electronic supplementary materialThe online version of this article (10.1186/s12943-018-0874-1) contains supplementary material, which is available to authorized users.
Background: Perturbations of the mammalian target of rapamycin (mTor) signaling pathway are implicated in Alzheimer disease (AD). Results:The activated mTor alters the activity of major tau kinases contributing to the formation of tau dyshomeostasis. Conclusion:We established a cellular system using genetic activation of mTor that developed authentic AD-like changes. Significance: The study provides potential tools for identifying tau-based therapeutics.
Abnormally hyperphosphorylated tau aggregates form paired helical filaments (PHFs) in neurofibrillary tangles, a key hallmark of Alzheimer's disease (AD) and other tauopathies. The cerebrospinal fluid (CSF) levels of soluble total tau and phospho-tau from clinically diagnosed AD patients are significantly higher compared with controls. Data from both in vitro and in vivo AD models have implied that an aberrant increase of mammalian target of rapamycin (mTor) signaling may be a causative factor for the formation of abnormally hyperphosphorylated tau. In the present study, we showed that in post-mortem human AD brain, tau was localized within different organelles (autophagic vacuoles, endoplasmic reticulum, Golgi complexes, and mitochondria). In human SH-SY5Y neuroblastoma cells stably carrying different genetic variants of mTor, we found a common link between the synthesis and distribution of intracellular tau. mTor overexpression or the lack of its expression was responsible for the altered balance of phosphorylated (p-)/-non phosphorylated (Np-) tau in the cytoplasm and different cellular compartments, which might facilitate tau deposition. Up-regulated mTor activity resulted in a significant increase in the amount of cytosolic tau as well as its re-localization to exocytotic vesicles that were not associated with exosomes. These results have implicated that mTor is involved in regulating tau distribution in subcellular organelles and in the initiation of tau secretion from cells to extracellular space.
Bone defect repair at load-bearing sites is a challenging clinical problem for orthopedists. Defect reconstruction with implants is the most common treatment; however, it requires the implant to have good mechanical properties and the capacity to promote bone formation. In recent years, the piezoelectric effect, in which electrical activity can be generated due to mechanical deformation, of native bone, which promotes bone formation, has been increasingly valued. Therefore, implants with piezoelectric effects have also attracted great attention from orthopedists. In this study, we developed a bioactive composite scaffold consisting of BaTiO3, a piezoelectric ceramic material, coated on porous Ti6Al4V. This composite scaffold showed not only appropriate mechanical properties, sufficient bone and blood vessel ingrowth space, and a suitable material surface topography but also a reconstructed electromagnetic microenvironment. The osteoconductive and osteoinductive properties of the scaffold were reflected by the proliferation, migration, and osteogenic differentiation of mesenchymal stem cells. The ability of the scaffold to support vascularization was reflected by the proliferation and migration of human umbilical vein endothelial cells and their secretion of VEGF and PDGF-BB. A well-established sheep spinal fusion model was used to evaluate bony fusion in vivo. Sheep underwent implantation with different scaffolds, and X-ray, micro-computed tomography, van Gieson staining, and elemental energy-dispersive spectroscopy were used to analyze bone formation. Isolated cervical angiography and visualization analysis were used to assess angiogenesis at 4 and 8 months after transplantation. The results of cellular and animal studies showed that the piezoelectric effect could significantly reinforce osteogenesis and angiogenesis. Furthermore, we also discuss the molecular mechanism by which the piezoelectric effect promotes osteogenic differentiation and vascularization. In summary, Ti6Al4V scaffold coated with BaTiO3 is a promising composite biomaterial for repairing bone defects, especially at load-bearing sites, that may have great clinical translation potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.