High-speed machining has received important interest because it leads to an increase of productivity and a better workpiece surface quality. However, the tool wear increases dramatically in high-speed machining (HSM) operations due to the high cutting temperature at the tool-workpiece interface and chip-tool interface. Cutting temperature and its gradient play an important role in tool life and machined part accuracy. This paper reviews different methods of the measurements of cutting temperature, which include: (1) thermocouples---tool-work thermocouple, embedded thermocouple, combination thermocouple and compensation thermocouple (2) optical infrared pyrometer, (3) infra-red photography, (4) thermal paints, (5) microstructure or microhardness observation. Each method has its advantages and limitations. The fundamental principles and application fields of each measurement method are presented, which is useful for the selection of the measurement methods for high-speed cutting temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.