Silicon nanoporous pillar array (Si-NPA) is a silicon hierarchical structure with regularly patterned surface morphology. Through a heterogeneous reaction process, zinc sulfide nanocrystallites (nc-ZnS) were grown onto Si-NPA and a unique heterostructure of ZnS/Si-NPA was obtained. The formation of wurtzite nc-ZnS was proved by x-ray diffraction, and the average grain size was evaluated to be ∼18 nm. X-ray photoelectron spectroscopy disclosed that as-grown nc-ZnS was well separated from Si-NPA by a SiO2 thin layer of ∼1.3 nm. The photoluminescence (PL) spectrum of ZnS/Si-NPA showed that in addition to the two red PL bands peaked at ∼648 and ∼705 nm observed in Si-NPA, three other PL bands peaked at ∼365, ∼418, and ∼472 nm were observed and attributed to the PL from nc-ZnS. It was also demonstrated that as-prepared ZnS/Si-NPA heterostructure could exhibit good rectification characteristic featured by a high forward current density of ∼75 mA/cm2 at 2 V and high reverse breakdown voltage of ∼10 V. Our results indicated that ZnS/Si-NPA might be a valuable heterostructure nanosystem to be further probed for achieving enhanced optical and electrical properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.