The factors that contribute to the exceptionally high incidence of Mycobacterium tuberculosis (MTb) disease in HIV+ persons are poorly understood. Macrophage apoptosis represents a critical innate host cell response to control MTb infection and limit disease. In the current study, virulent live or irradiated MTb (iMTbRv) induced apoptosis of differentiated human U937 macrophages in vitro, in part dependent on TNF-α. In contrast, apoptosis of differentiated HIV+ human U1 macrophages (HIV+ U937 subclone) was markedly reduced in response to iMTbRv and associated with significantly reduced TNF-α release, whereas apoptosis and TNF-α release were intact to TLR-independent stimuli. Furthermore, reduced macrophage apoptosis and TNF-α release were independent of MTb phagocytosis. Whereas surface expression of macrophage TLR2 and TLR4 was preserved, IL-1 receptor associated kinase-1 phosphorylation and NF-κB nuclear translocation were reduced in HIV+ U1 macrophages in response to iMTbRv. These findings were confirmed using clinically relevant human alveolar macrophages (AM) from healthy persons and asymptomatic HIV+ persons at clinical risk for MTb infection. Furthermore, in vitro HIV infection of AM from healthy persons reduced both TNF-α release and AM apoptosis in response to iMTbRv. These data identify an intrinsic specific defect in a critical macrophage cellular response to MTb that may contribute to disease pathogenesis in HIV+ persons.
BackgroundSphingosine kinase 1 (SK1) is a key regulator of the dynamic ceramide/sphingosine 1-phosphate rheostat balance and important in the pathological cancer genesis, progression, and metastasis processes. Many studies have demonstrated SK1 overexpressed in various cancers, but no meta-analysis has evaluated the relationship between SK1 and various cancers.MethodsWe retrieved relevant articles from the PubMed, EBSCO, ISI, and OVID databases. A pooled odds ratio (OR) was used to assess the associations between SK1 expression and cancer; hazard ratios (HR) were used for 5-year and overall survival. Review Manager 5.0 was used for the meta-analysis, and publication bias was evaluated with STATA 12.0 (Egger’s test).ResultsThirty-four eligible studies (n = 4,673 patients) were identified. SK1 positivity and high expression were significantly different between cancer, non-cancer, and benign tissues. SK1 mRNA and protein expression levels were elevated in the cancer tissues, compared with the normal tissues. SK1 positivity rates differed between various cancer types (lowest [27.3%] in estrogen receptor-positive breast cancer and highest [82.2%] in tongue squamous cell carcinoma). SK1 positivity and high expression were associated with 5-year survival; the HR was 1.86 (95% confidence interval [CI], 1.18–2.94) for breast cancer, 1.58 (1.08–2.31) for gastric cancer, and 2.68 (2.10–3.44) for other cancers; the total cancer HR was 2.21 (95% CI, 1.83–2.67; P < 0.00001). The overall survival HRs were 2.09 (95% CI, 1.35–3.22), 1.56 (1.08–2.25), and 2.62 (2.05–3.35) in breast, gastric, and other cancers, respectively. The total effect HR was 2.21 (95% CI, 1.83–2.66; P < 0.00001).ConclusionsSK1 positivity and high expression were significantly associated with cancer and a shorter 5-year and overall survival. SK1 positivity rates vary tremendously among the cancer types. It is necessary to further explore whether SK1 might be a predictive biomarker of outcomes in cancer patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.