Anthropogenic environments have been implicated in enrichment and exchange of antibiotic resistance genes and bacteria. Here we study the impact of confined and controlled swine farm environments on temporal changes in the gut microbiome and resistome of veterinary students with occupational exposure for 3 months. By analyzing 16S rRNA and whole metagenome shotgun sequencing data in tandem with culture-based methods, we show that farm exposure shapes the gut microbiome of students, resulting in enrichment of potentially pathogenic taxa and antimicrobial resistance genes. Comparison of students' gut microbiomes and resistomes to farm workers' and environmental samples revealed extensive sharing of resistance genes and bacteria following exposure and after three months of their visit. Notably, antibiotic resistance genes were found in similar genetic contexts in student samples and farm environmental samples. Dynamic Bayesian network modeling predicted that the observed changes partially reverse over a 4-6 month period. Our results indicate that acute changes in a human's living environment can persistently shape their gut microbiota and antibiotic resistome.
Three dimensional carbon fiber reinforced silicon oxycarbide (3D Cf/Si-O-C) composites with low cost silicon resin as precursors and 3D Cf as reinforcement. Effects of adding SiC powder (SiCP) on the microstructure, mechanical properties and anti-oxidation properties of 3D Cf/Si-O-C composites were investigated. The results showed that adding SiCP filler could reduce the porosity and improve the interface bonding, therefore the properties of composites increased. But when the SiCP content was excessive, it was difficult to dense the matrix of composites at the further cycles and pores existed in the matrix. As a result, the mechanical properties of the composites decreased. It was found that when fabricated with 18.2 weight percent SiCP the composites exhibited highest mechanical properties, and the flexural strength and fracture toughness reached 421.3MPa and 13.0 MPa•m1/2, respectively. And the anti-oxidation properties were improved with the increase of the SiCP content. When fabricated with 25.0 weight percent SiCP the composites exhibited best oxidation resistance properties, and the composites retained 89.5% of original flexural strength.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.