Lung cancer has the highest mortality of any cancer worldwide, and cisplatin is a first-line chemotherapeutic agent for lung cancer treatment. Unfortunately, cisplatin resistance is a common cause of therapeutic failure. The ability to overcome chemoresistance is crucial to the effective treatment of lung cancer. Recently, epigallocatechin gallate (EGCG), a type of polyphenol extracted from tea, has been shown to suppress the rapid proliferation of cancer cells, including lung cancer. We tested whether nanoparticles (NPs) carrying a dual drug load, cisplatin and EGCG, could overcome chemoresistance to cisplatin, by working together to kill lung cancer cells. Self-assembling gelatin/EGCG nanoparticles (GE) were synthesized, and cisplatin was then incorporated, to construct a dual drug nanomedicine (EGCG/cisplatin-loaded gelatin nanoparticle, named as GE-Pt NP). The particle size and zeta potential were examined by dynamic light scattering (DLS). The morphological structure of GE-Pt NPs was observed by transmission electron microscopy (TEM). In vitro testing was performed using a human lung adenocarcinoma cell line (A549). A cytotoxicity examination was performed, using a WST-8 cell proliferation assay. Intracellular cisplatin content was quantified by inductively coupled plasma mass spectrometry (ICP-MS). In conclusion, we successfully prepared GE-Pt NPs, as spherical structures, approximately 75 nm in diameter, with a positive charge (+19.83±0.25 mV). The encapsulation rate of cisplatin in GE-Pt was about 63.7%, and the EGCG loading rate was around 89%. A relatively low concentration of GE-Pt NPs (EGCG 5 μg/mL : cisplatin 2 μg/mL) exhibited significant cytotoxicity, compared to cisplatin alone. The GE-Pt NPs are freely taken up by cells via endocytosis, raising the intracellular cisplatin concentration to a therapeutic level. We consider that combination therapy of cisplatin and EGCG in nanoparticles (GE-Pt NPs) may help overcome cisplatin resistance and could effectively be used in the treatment of lung cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.