Tried-and-true flapping wing robot simulation is essential in developing flapping wing mechanisms and algorithms. This paper presents a novel application-oriented flapping wing platform, highly compatible with various mechanical designs and adaptable to different robotic tasks. First, the blade element theory and the quasi-steady model are put forward to compute the flapping wing aerodynamics based on wing kinematics. Translational lift, translational drag, rotational lift, and added mass force are all considered in the computation. Then we use the proposed simulation platform to investigate the passive wing rotation and the wing-tail interaction phenomena of a particular flapping-wing robot. With the help of the simulation tool and a novel statistic based on dynamic differences from the averaged system, several behaviors display their essence by investigating the flapping wing robot dynamic characteristics. After that, the attitude tracking control problem and the positional trajectory tracking problem are both overcome by robust control techniques. Further comparison simulations reveal that the proposed control algorithms compared with other existing ones show apparent superiority. What is more, with the same control algorithm and parameters tuned in simulation, we conduct real flight experiments on a self-made flapping wing robot, and obtain similar results from the proposed simulation platform. In contrast to existing simulation tools, the proposed one is compatible with most existing flapping wing robots, and can inherently drill into each subtle behavior in corresponding applications by observing aerodynamic forces and torques on each blade element.
Based on characteristics of high-speed trains, a special passive protective structure was designed and simulated by the non-linear FEA code LS-DYNA. The two-step energy-absorbing structure fixed on the cab side and the similar function structure on the other end were studied. It was proved that the two-step structure deformed orderly and had an energy absorbing capacity of 3.4MJ which could protect the cab effectively and that the rear end low stiffness zone had an energy absorbing capacity of 6.5MJ which also could protect the integrity of the passenger areas. Three typical train-to-train collision scenarios were studied by full-scale FEA method.
The principle of balancing a high speed cantilever rotor at full speed has been put forward by low-speed and high-speed balancing. The portable field dynamic balancing instrument based on the microcontroller is discussed from the hardware, the software and the signal process in detail. With the developed instrument, the whole-machine balancing experiment was conducted on a saucer-separating centrifuge RJ-460. The vibration of the saucer-separating centrifuge decreased from 3.8mm/s to 0.3mm/s at 1200r/min and decreased from 9.8mm/s to 0.6mm/s at 7200r/min. The experimental results indicated that the principle of balance is correct and the designed instrument is reliable and promising.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.