The quorum sensing (QS) system inhibitors of Pseudomonas aeruginosa are thought to attenuate bacterial pathogenicity and drug resistance by inhibiting biofilm formation and the production of virulence factors. In this study, a synthetic approach to the natural products cajaninstilbene acid (1) and amorfrutins A (2) and B (3) has been developed and was characterized by the Heck reaction, which was used to obtain the stilbene core and a Pinick oxidation to give the O-hydroxybenzoic acid. The biological activities of these compounds against the P. aeruginosa quorum sensing systems were evaluated. Amorfrutin B (3) showed promising antibiofilm activity against P. aeruginosa PAO1 with a biofilm inhibition ratio of 50.3 ± 2.7. Three lacZ reporter strains were constructed to identify the effects of compound 3 on different QS systems. Suppression efficacy of compound 3 on the expression of lasB-lacZ and pqsA-lacZ as well as on the production of their corresponding virulence factors elastase and pyocyanin was observed.
Developing therapeutic approaches that target neuronal differentiation will be greatly beneficial for the regeneration of neurons and synaptic networks in neurological diseases. Protein synthesis (mRNA translation) has recently been shown to regulate neurogenesis of neural stem/progenitor cells (NSPCs). However, it has remained unknown whether engineering translational machinery is a valid approach for manipulating neuronal differentiation. The present study identifies that a bivalent securinine compound SN3-L6, previously designed and synthesized by our group, induces potent neuronal differentiation through a novel translation-dependent mechanism. An isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomic analysis in Neuro-2a progenitor cells revealed that SN3-L6 upregulated a group of neurogenic transcription regulators, and also upregulated proteins involved in RNA processing, translation, and protein metabolism. Notably, puromycylation and metabolic labeling of newly synthesized proteins demonstrated that SN3-L6 induced rapid and robust activation of general mRNA translation. Importantly, mRNAs of the proneural transcription factors Foxp1, Foxp4, Hsf1, and Erf were among the targets that were translationally upregulated by SN3-L6. Either inhibition of translation or knockdown of these transcription factors blocked SN3-L6 activity. We finally confirmed that protein synthesis of a same set of transcription factors was upregulated in primary cortical NPCs. These findings together identify a new compound for translational activation and neuronal differentiation, and provide compelling evidence that reprogramming transcriptional regulation network at translational levels is a promising strategy for engineering NSPCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.