In order to study the interface characteristics and microstructure formation of Ti-Al composite plate, explosive welding was carried out with TA2 titanium as the fly plate and 5083 aluminums as the base plate. Optical microscope and electron microscope were used to analyze the microstructure of intermetallic compounds. SPH method was used to simulate the welding process of composite plates. The formation conditions and initial defects of intermetallic compounds were analyzed. The results show that most of the melted metal in the wave-front stays in the wave-waist region, and there was a relative velocity difference between the vortex and the titanium tissue, which led to the existence of small pieces of fragmentation. The outer layer of the vortex had higher velocity than the inner layer. The formation of Ti 3 Al, its antioxidant capacity wound lead to the formation of cracks. The temperature of outer vortex was higher than that of inner vortex, and the vortex has a transition layer of 5 μm, which is thinner than the transition layer of 8 μm between cladding plate and substrate. The jet was mostly composed of aluminum metal, and the interface jet velocity reaches 3000 m•s -1 and the interface temperature reaches up to 2100 K. Compared with the molten metal in the wave-back vortex, the jet temperature at the interface was higher, resulting in a thicker transition layer at the bonding surface. The residual stress at the interface wound cause the density of the material to increase.
In order to study the interface characteristics and microstructure formation of Ti-Al composite plate, explosive welding was carried out with TA2 titanium as the fly plate and 5083 aluminums as the base plate. Optical microscope and electron microscope were used to analyze the microstructure of intermetallic compounds. SPH method was used to simulate the welding process of composite plates. The formation conditions and initial defects of intermetallic compounds were analyzed. The results show that most of the melted metal in the wave-front stays in the wave-waist region, and there was a relative velocity difference between the vortex and the titanium tissue, which led to the existence of small pieces of fragmentation. The outer layer of the vortex had higher velocity than the inner layer. The formation of Ti3Al, its antioxidant capacity wound lead to the formation of cracks. The temperature of outer vortex was higher than that of inner vortex, and the vortex has a transition layer of 5 μm, which is thinner than the transition layer of 8 μm between cladding plate and substrate. The jet was mostly composed of aluminum metal, and the interface jet velocity reaches 3000 m·s-1 and the interface temperature reaches up to 2100 K. Compared with the molten metal in the wave-back vortex, the jet temperature at the interface was higher, resulting in a thicker transition layer at the bonding surface. The residual stress at the interface wound cause the density of the material to increase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.