Hypofunction of the serotonergic (5-HT) system has close relationship with the symptoms in major depressive disorders (MDD), however, the underlying neural circuitry mechanisms are not fully understood. Lateral habenula (LHb) plays a crucial role in aversive behaviors and is activated in conditions of depression. It has been reported that 5-HT inhibits the excitability of LHb neurons, leading to the hypothesis that decreased transmission of 5-HT would elevate the activity of LHb and therefore mediates depressive symptoms. Using retrograde tract tracing with cholera toxin subunit B, we find that dorsal raphe nucleus (DRN) sends primary 5-HT projection to the LHb. In vitro slice patch-clamp recording reveals that opto-stimulation of DRN inputs to the LHb suppresses the frequency of miniature excitatory postsynaptic current, while increases paired pulse ratio in LHb neurons, indicating 5-HT projection presynaptically suppresses the excitability of LHb neurons. In chronic unpredictable mild stress (CUMS) rat model of depression, optogenetic stimulation of DRN-LHb projection alleviates the depressive symptoms in CUMS models. Meanwhile, opto-inhibition of this circuit results in elevated c-fos expression in LHb and induces depression-like behaviors. This study demonstrates that the 5-HT projection from DRN to LHb suppresses the excitability of LHb neurons, and hypofunction of 5-HT transmission induces depressive behavior via the activation of LHb. Our results reveal the functional connectivity of DRN-LHb circuit and its antidepressant action, which may provide a novel target for the treatment of depression.
Palmitoylation may be relevant to the processes of learning and memory, and even disorders, such as post-traumatic stress disorder and aging-related cognitive decline. However, underlying mechanisms of palmitoylation in these processes remain unclear. Herein, we used acyl-biotin exchange, coimmunoprecipitation and biotinylation assays, and behavioral and electrophysiological methods, to explore whether palmitoylation is required for hippocampal synaptic transmission and fear memory formation, and involved in functional modification of synaptic proteins, such as postsynapse density-95 (PSD-95) and glutamate receptors, and detected if depalmitoylation by specific enzymes has influence on glutamatergic synaptic plasticity. Our results showed that global palmitoylation level, palmitoylation of PSD-95 and glutamate receptors, postsynapse density localization of PSD-95, surface expression of AMPARs, and synaptic strength of cultured hippocampal neurons were all enhanced by TTX pretreatment, and these can be reversed by inhibition of palmitoylation with palmitoyl acyl transferases inhibitors, 2-bromopalmitate and N-(tert-butyl) hydroxylamine hydrochloride. Importantly, we also found that acyl-protein thioesterase 1 (APT1)-mediated depalmitoylation is involved in palmitoylation of PSD-95 and glutamatergic synaptic transmission. Knockdown of APT1, not protein palmitoyl thioesterase 1, with shRNA, or selective inhibition, significantly increased AMPAR-mediated synaptic strength, palmitoylation levels, and synaptic or surface expression of PSD-95 and AMPARs. Results from hippocampal tissues and fear-conditioned rats showed that palmitoylation is required for synaptic strengthening and fear memory formation. These results suggest that palmitoylation and APT1-mediated depalmitoylation have critical effects on the regulation of glutamatergic synaptic plasticity, and it may serve as a potential target for learning and memory-associated disorders.
Nonalcoholic fatty liver disease (NAFLD) is closely related to glycolipid metabolism and liver inflammation. And there is no effective drug approved for its clinical therapy. In this study, we focused on mangiferin (Man) and explored its effects and mechanisms on NAFLD treatment based on the regulation of glycolipid metabolism and anti-inflammatory in vivo and in vitro. The results exhibited that Man can significantly attenuate liver injury, insulin resistance, and glucose tolerance in high-fat diet- (HFD-) induced NAFLD mice and significantly reduce fat accumulation and inflammation in hepatic tissue of NAFLD mice. The transcriptome level RNA-seq analysis showed that the significantly different expression genes between the Man treatment group and the HFD-induced NAFLD model group were mainly related to regulation of energy, metabolism, and inflammation in liver tissue. Furthermore, western blots, real-time PCR, and immunohistochemistry experiments confirmed that Man significantly activated the AMPK signal pathway and inhibited NLRP3 inflammasome activation and pyroptosis in NAFLD mice. In in vitro cell experiments, we further confirmed that Man can promote glucose consumption and reduce intracellular triglyceride (TG) accumulation induced by free fatty acids in HepG2 cells and further that it can be blocked by AMPK-specific inhibitors. Western blot results showed that Man upregulated p-AMPKα levels and exhibited a significant AMPK activation effect, which was blocked by compound C. At the same time, Man downregulated the expression of NLRP3 inflammasome-related proteins and inhibited the activation of NLRP3 inflammasome, alleviating cell pyroptosis and inflammation effects. These results indicate that Man anti-NAFLD activity is mediated through its regulation of glucolipid metabolism by AMPK activation and its anti-inflammatory effects by NLRP3 inflammasome inhibition. Our study indicates that Man is a promising prodrug for the therapy of NAFLD patients.
Aim: To assess SLC6A6 expression in gastric cancer, its correlation with patients’ clinicopathological features and survival, and the possible epigenetic regulation mechanism. Methods: Expression profiles and methylation data were obtained from the Gene Expression Omnibus database and the Cancer Genome Atlas. The SLC6A6's protein level were obtained from the Human Protein Atlas. Correlations between SLC6A6 expression and clinicopathological features were assessed using the χ2 test, and survival by the Kaplan–Meier analysis. By analyzing methylation data, the mechanisms of SLC6A6 dysregulation were investigated. Results: SLC6A6 expression was higher in gastric cancer, and indicated poor prognosis. Low-methylation levels were significantly related to high SLC6A6 expression. Conclusion: SLC6A6 may be a potential prognostic marker and therapeutic target. Hypomethylation contributes to SLC6A6 upregulation in gastric cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.