Background/Aims: Prior studies have shown that bufalin inhibits cellular proliferation and induces apoptosis in various human cancers. MicroRNA-203 (miR-203) has been shown to function as an important regulator of tumor progression at various stages. In this study, we investigated the effect of miR-203 expression and bufalin treatment on glioma cell proliferation and stem cell-like phenotypes. Methods: We used cell viability assay, colony formation assay, cell apoptosis assay and neurosphere formation assay to dectect the treatment effect of bufalin on U251 and U87 cells. Cells were transfected with the miR-203 mimic without bufalin treatment or cells were transfected with anti-miR-203 under bufalin treatment, the above expreiments were repeated. RT-PCR was employed to quantify miR-203 expression. Western blot was performed to detect the stem cell-like (CSC) markers, OCT4 and SOX2. Luciferase activity assay was used to determine whether the SPARC is the target of miR-203. Results: Bufalin treatment inhibited cell proliferation, colony formation, and CSC phenotypes and increased cell apoptosis and expression of miR-203. Furthermore, overexpression of miR-203 led to similar outcomes as bufalin treatment with respect to the cell viability, colony formation, cell apoptosis and the phenotypes of glioma cells. While anti-miR-203 attenuated the inhibitory effects of bufalin as promoting cell proliferation, colony formation and CSC phenotyes and inhibiting cell apoptosis. In addition, we identified SPARC as a novel target gene of miR-203. Conclusions: These findings suggest that miR-203 plays an important role in bufalin’s ability to inhibit the growth of glioma cells and the development of stem cell-like phenotypes.
Hemorrhagic transformation (HT) is a devastating complication for patients with acute ischemic stroke (AIS) who are treated with tissue plasminogen activator (tPA). HT is associated with high morbidity and mortality, but no effective treatments are currently available to reduce the risk of HT. Therefore, methods to prevent HT are urgently needed. In this study, we used IM-12, an inhibitor of glycogen synthase kinase 3β (GSK-3β), to evaluate the role of the Wnt–β-catenin signaling pathway in recombinant tPA (rtPA)-induced HT. Sprague–Dawley rats were subjected to a middle cerebral artery occlusion (MCAO) model of ischemic stroke, and then were either administered rtPA, rtPA combined with IM-12, or the vehicle at 4 h after stroke was induced. Our results indicate that rats subjected to HT had more severe neurological deficits, brain edema, and blood–brain barrier (BBB) breakdown, and had a greater infarction volume than the control group. Rats treated with IM-12 had improved outcomes compared with those of rats treated with rtPA alone. Moreover, IM-12 increased the protein expression of β-catenin and downstream proteins while suppressing the expression of GSK-3β. These results suggest that IM-12 reduces rtPA-induced HT and attenuates BBB disruption, possibly through activation of the Wnt–β-catenin signaling pathway, and provides a potential therapeutic strategy for preventing tPA-induced HT after AIS.
Abstract. To investigate the expression and clinical significance of miR-181a and its target genes in glioblastoma multiforme (GBM), the expression levels of miR-181a and three target genes in human normal brain tissues and GBM were analyzed in silico using gene microarray, Gene Ontology, KEGG pathway and hierarchical clustering analysis followed by validation with quantitative RT-PCR. Our results show that miR-181a is down-regulated in GBM patients. The three target genes, ANGPT2, ARHGAP18 and LAMC1, are negatively correlated with the expression of miR-181a. Moreover, high expression of ANGPT2 or LAMC1 together with large size of GBM is correlated with a shorter median overall survival. In conclusion, our results showed that miR-181a and it targets ANGPT2 and LAMC1 might be predictors of prognosis in GBM patients.
Vascular dementia, secondary to Alzheimer’s dementia, ranks as one of the most frequent dementia types. The process of vascular dementia is divergent with other neurodegenerative dementias and thus reversible at the early cognitive disorder or mild dementia stages. The encephalography and neuroimaging data mining at different stages would bring neuromodulation strategies in practice; 15 mild cognitive impairment patients and 16 mild vascular dementia patients as well as 17 cognitive healthy controls were screened in this study. Cognitive tests such as Mini-Mental State Examination, Montreal cognitive assessment, voxel-based morphometry, electroencephalography, and standardized low-resolution brain electromagnetic tomography connectivity network were conducted. Compared with healthy group, voxel-based morphometry analysis showed a decrease in gray/cerebrospinal fluid ratio ( p < .05) in mild dementia group; the energy power of gamma band decreased ( p < .05) in mild dementia group; and electroencephalography standardized low-resolution brain electromagnetic tomography analysis showed wider frontal and temporal lobe involvement in mild dementia patients ( p < .05). Network topological analysis screened top 10 key Brodmann areas (44R, 7R, 8L, 22L, 47L, 27L, 1L, 1R, 7R, 43L), which could be underlying neuromodulators for dementia patients. Electroencephalography as well as structural magnetic resonance imaging could be used for the evaluation of cognitive disorder patients. The spectrum-specific standardized low-resolution brain electromagnetic tomography analysis and connectivity network analysis could shed light on the neuromodulator targets in the early phase of dementia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.