<p>To improve pattern representation capabilities and robustness in traditional finger-vein recognition algorithms. In this paper, we propose FFV-MBC, a novel fused finger-vein recognition method based on monogenic binary coding (MBC). First of all, the amplitude, orientation, and phase information of the finger-vein images are filtered by a multi-scale monogenic log-Gabor filter and encoded by the binary coding theory. Three local features, MBC-A, MBC-P, and MBC-O, are achieved from different combinations of local image intensity and variation coding. After obtaining the features, we utilize the block-based Fisher Linear Discriminant method to reduce the dimension. Finally, the similarity components are calculated by the cosine distance and fused for the final finger-vein recognition results. We evaluate our proposed method on two publicly available datasets and one self-built dataset, i.e., Malaysian Polytechnic University (FV-USM), the Group of Machine Learning and Applications of Shandong University (SDUMLA-HMT), and our team, Signal and Information Processing Laboratory (FV-SIPL). On average, the proposed method achieved high recognition accuracy, i.e., 99.30%, and 1.10% equal error rates (EER). Overall, the proposed method performs better than most classical and state-of-the-art finger-vein recognition methods.</p> <p> </p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.