Objective. High-frequency repetitive transcranial magnetic stimulation (HF-rTMS) has been proposed as a promising therapeutic intervention for patients with disorders of consciousness (DOC). However, its therapeutic effects in the literature are inconsistently documented. The primary aim of this study was to explore the alterations in neural connectivity and neurobehavioral reactivity during rTMS modulation in patients with DOC. In addition, safety was investigated as a secondary aim. Methods. The presence of bilateral N20 components in DOC patients was determined by somatosensory-evoked potential (SEP) before enrollment in the study. A total of 64 patients were enrolled and randomly placed into the active and sham groups. Ultimately, 50 patients completed the study. Twenty-five patients in the active group underwent real HF-rTMS, and 25 patients in the sham group underwent sham HF-rTMS, which was delivered over the left dorsolateral prefrontal cortex (DLPFC). The outcome measures of performed pre- and postintervention included the latencies of the N20 and N20-P25 amplitudes of SEP, brainstem auditory-evoked potential (BAEP) grade, JFK Coma Recovery Scale-Revised (CRS-R) score, and Glasgow Coma Scale (GCS) score; any adverse events were recorded at any time during the intervention. Result. Following six weeks of treatment, a significant increase was observed in the total CRS-R and GCS scores, and the N20-P25 amplitudes of patients in the two groups were compared with that obtained from preintervention (all p values < 0.05). The waves of BAEP in the two groups also showed a trend toward normalized activity compared with preintervention grades ( p values < 0.05). A significant decrease in the latencies of N20 ( p values < 0.001) was observed in the active group compared with measurements obtained from preintervention, whereas no significant decrease was observed in the sham group ( p values = 0.013). The improvement in total CRS-R scores ( p values = 0.002), total GCS scores ( p values = 0.023), and N20-P25 amplitudes ( p values = 0.011) as well as the decrease in latencies of N20 ( p values = 0.018) and change in BAEP grades ( p values = 0.013) were significantly different between the two groups. The parameters in neural connectivity (N20-P25 amplitudes, N20 latencies, and BAEP grades) were significantly correlated with the total CRS-R and GCS scores at postintervention, and the changes of CRS-R before and after interventions have a positive relationship with N20-P25 amplitudes. No adverse events related to the rTMS protocol were recorded. Conclusion. Neural connectivity levels are affected by HF-rTMS and are significantly related to clinical responses in DOC patients with the presence of bilateral N20. The elevation of neural connectivity levels may lay a foundation for successful HF-rTMS treatment for DOC patients.
The electrophysiological recording can be used to quantify the clinical features of central poststroke pain (CPSP) caused by different lesion locations. We aimed to explore the relationship between clinical features and lesion location in patients with CPSP using the current perception threshold (CPT) approach. Here, patients underwent the standardized CPT measure at five detection sites on both the contralesional and ipsilesional sides, using a constant alternating-current sinusoid waveform stimulus at three frequencies: 2000 Hz, 250 Hz, and 5 Hz. 57 CPSP patients were recruited in this cross-sectional study, including 13 patients with thalamic lesions and 44 patients with internal capsule lesions. Patients with a thalamic lesion had more frequent abnormal Aδ and C fibers than those with an internal capsule lesion (69.2% versus 36.4%, p value = 0.038; 53.8% versus 63.6%, p value = 0.038). The patients with internal capsule lesions had more frequent abnormal Aβ fibers than those with thalamic lesions (53.8% versus 63.6%, p value < 0.001). The sensory dysfunction in the patients with thalamic lesions was more likely to occur in the upper limbs (i.e., the shoulder ( p value = 0.027) and the finger ( p value = 0.040)). The lower limbs (i.e., the knee ( p value = 0.040) and the toe ( p value = 0.005)) were more likely to experience sensory dysfunction in the patients with internal capsule lesions. Hyperesthesia was more likely to occur in the thalamic patients, and hypoesthesia was more likely to occur in the patients with internal capsule lesions ( p value < 0.001). In patients with thalamic lesions, Visual Analogue Scale (VAS) had a positive correlation with 5 Hz CPT on the shoulder ( r = 0.010 , p value = 0.005), 250 Hz CPT on the finger ( r = 0.690 , p value = 0.009) from the contralesional side, and 2000 Hz CPT on the knee ( r = 0.690 , p value = 0.009). In patients with internal capsule lesions, VAS had a positive correlation with 2000 Hz CPT on the knee ( r = 0.312 , p value = 0.039) and foot ( r = 0.538 , p value < 0.001). In conclusion, the abnormal fiber types, sensory dysfunction territory, and clinical signs of CPSP in thalamic stroke differ from those in internal capsule stroke. Implementation of the portable and convenient CPT protocol may help clarify the locations of different stroke lesions in various clinical settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.