Objectives
This study aimed to investigate metabolic biomarker changes and related metabolic pathways before and after treatment with l-borneolum in cerebral ischaemic rats.
Methods
Rats were subjected to pMCAO surgery. The Zea-Longa scoring method was used to evaluate neurological deficits. TTC staining was used to observe cerebral infarction. HE staining was used to observe the pathological changes in brain tissue. The metabolomics method was used to analyse the changes in metabolism.
Results
The pharmacology changes of the H-B group were significantly different from those of the vehicle group. Moreover, according to the metabolomics method, identification of potential biomarkers in cerebral ischaemia treatment showed that the levels of l-valine and l-arginine were increased while the levels of N-succinyl-L,L-2,6-diaminopimelate and LysoPC (18 : 1(9Z)) were reduced, which were related to energy metabolism. Simultaneously, thermogenesis and bile secretion levels were inhibited by l-borneolum. Furthermore, elevated level of methotrexate might be related to an anti-inflammatory effect.
Conclusions
The therapeutic effect of l-borneolum on cerebral ischaemia might be associated with the regulation of energy metabolism, thermogenesis and bile secretion. These metabolic changes and the core target changes, as well as the metabolic-target pathway network, help to elucidate the mechanisms governing the effect of l-borneolum on cerebral ischaemia.
Gastric cancer (GC) is one of the most serious gastrointestinal malignancies with high morbidity and mortality. The complexity of GC process lies in the multi‐phenotypic linkage regulation, in which regulatory cell death (RCD) is the core link, which largely dominates the fate of GC cells and becomes a key determinant of GC development and prognosis. In recent years, increasing evidence has been reported that natural products can prevent and inhibit the development of GC by regulating RCDs, showing great therapeutic potential. In order to further clarify its key regulatory characteristics, this review focused on specific expressions of RCDs, combined with a variety of signaling pathways and their crosstalk characteristics, sorted out the key targets and action rules of natural products targeting RCD. It is highlighted that a variety of core biological pathways and core targets are involved in the decision of GC cell fate, including the PI3K/Akt signaling pathway, MAPK‐related signaling pathways, p53 signaling pathway, ER stress, Caspase‐8, gasdermin D (GSDMD), and so on. Moreover, natural products target the crosstalk of different RCDs by modulating above signaling pathways. Taken together, these findings suggest that targeting various RCDs in GC with natural products is a promising strategy, providing a reference for further clarifying the molecular mechanism of natural products treating GC, which warrants further investigations in this area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.