Purpose: Focal cortical dysplasia (FCD) is a malformation of cortical development that often causes pharmacologically intractable epilepsy. However, FCD lesions are frequently characterized by minor structural abnormalities that can easily go unrecognized, making diagnosis difficult. Therefore, many epileptic patients have had pathologically confirmed FCD lesions that appeared normal in pre-surgical fluid-attenuated inversion recovery (FLAIR) magnetic resonance (MR) studies. Such lesions are called "FLAIR-negative." This study aimed to improve the detection of histopathologically verified FCD in a sample of patients without visually appreciable lesions. Methods: The technique first extracts a series of features from a FLAIR image. Then, three naive Bayesian classifiers with probability (NBCP) are trained based on different numbers of feature maps to classify voxels as lesional or healthy voxels and assign the lesions a probability of correct classification. This method classifies the three-dimensional (3D) images of all patients using leave-one-out cross-validation (LOOCV). Finally, the 3D lesion probability map, including epileptogenic lesions, is obtained by removing false-positive voxel outliers using the morphological method. The performance of the NBCP was assessed for quantitative analysis by specificity, accuracy, recall, precision, and Dice coefficient in subject-wise, lesion-wise, and voxel-wise manners. Results: The best detection results were obtained by using four features: cortical thickness, symmetry, K-means, and modified texture energy. There were eight lesions in seven patients. The subjectwise sensitivity of the proposed method was 85.71% (6/7). Seven out of eight lesions were detected, so the lesion-wise sensitivity was 87.50% (7/8). No significant differences in effectiveness were found between automated lesion detection using four features and lesion detection using manual segmentation, as voxels were quantitatively analyzed in terms of specificity (mean AE SD = 99.64 AE 0.13), accuracy (mean AE SD = 99.62 AE 0.14), recall (mean AE SD = 73.27 AE 26.11), precision (mean AE SD = 11.93 AE 8.16), and Dice coefficient (mean AE SD = 22.82 AE 15.57). Conclusion: We developed a novel automatic voxel-based method to improve the detection of FCD FLAIR-negative lesions. To the best of our knowledge, this study is the first to detect FCD lesions that appear normal in pre-surgical 3D high-resolution FLAIR images alone with a limited number of radiomics features. We optimized the algorithm and selected the best prior probability to improve the detection. For non-temporal lobe epilepsy (non-TLE) patients, lesions could be accurately located, although there were still false-positive areas.
Recently, the application of artificial intelligence (AI) in medical imaging (including nuclear medicine imaging) has rapidly developed. Most AI applications in nuclear medicine imaging have focused on the diagnosis, treatment monitoring, and correlation analyses with pathology or specific gene mutation.It can also be used for image generation to shorten the time of image acquisition, reduce the dose of injected tracer, and enhance image quality. This work provides an overview of the application of AI in image generation for single-photon emission computed tomography (SPECT) and positron emission tomography (PET) either without or with anatomical information [CT or magnetic resonance imaging (MRI)]. This review focused on four aspects, including imaging physics, image reconstruction, image postprocessing, and internal dosimetry. AI application in generating attenuation map, estimating scatter events, boosting image quality, and predicting internal dose map is summarized and discussed.
Background This paper describes the development of a predicted electronic portal imaging device (EPID) transmission image (TI) using Monte Carlo (MC) and deep learning (DL). The measured and predicted TI were compared for two-dimensional in vivo radiotherapy treatment verification. Methods The plan CT was pre-processed and combined with solid water and then imported into PRIMO. The MC method was used to calculate the dose distribution of the combined CT. The U-net neural network-based deep learning model was trained to predict EPID TI based on the dose distribution of solid water calculated by PRIMO. The predicted TI was compared with the measured TI for two-dimensional in vivo treatment verification. Results The EPID TI of 1500 IMRT fields were acquired, among which 1200, 150, and 150 fields were used as the training set, the validation set, and the test set, respectively. A comparison of the predicted and measured TI was carried out using global gamma analyses of 3%/3 mm and 2%/2 mm (5% threshold) to validate the model's accuracy. The gamma pass rates were greater than 96.7% and 92.3%, and the mean gamma values were 0.21 and 0.32, respectively. Conclusions Our method facilitates the modelling process more easily and increases the calculation accuracy when using the MC algorithm to simulate the EPID response, and has potential to be used for in vivo treatment verification in the clinic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.