Soil moisture (SM) products presently available in permafrost regions, especially on the Qinghai–Tibet Plateau (QTP), hardly meet the demands of evaluating and modeling climatic, hydrological, and ecological processes, due to their significant bias and low spatial resolution. This study developed an algorithm to generate high-spatial-resolution SM during the thawing season using Sentinel-1 (S1) and Sentinel-2 (S2) temporal data in the permafrost environment. This algorithm utilizes the seasonal backscatter differences to reduce the effect of surface roughness and uses the normalized difference vegetation index (NDVI) and the normalized difference moisture index (NDMI) to characterize vegetation contribution. Then, the SM map with a grid spacing of 50 m × 50 m in the hinterland of the QTP with an area of 505 km × 246 km was generated. The results were independently validated based on in situ data from active layer monitoring sites. It shows that this algorithm can retrieve SM well in the study area. The coefficient of determination (R2) and root-mean-square error (RMSE) are 0.82 and 0.06 m3/m3, respectively. This study analyzed the SM distribution of different vegetation types: the alpine swamp meadow had the largest SM of 0.26 m3/m3, followed by the alpine meadow (0.23), alpine steppe (0.2), and alpine desert (0.16), taking the Tuotuo River basin as an example. We also found a significantly negative correlation between the coefficient of variation (CV) and SM in the permafrost area, and the variability of SM is higher in drier environments and lower in wetter environments. The comparison with ERA5-Land, GLDAS, and ESA CCI showed that the proposed method can provide more spatial details and achieve better performance in permafrost areas on QTP. The results also indicated that the developed algorithm has the potential to be applied in the entire permafrost regions on the QTP.
The source region of the Yellow River (SRYR) is situated on the permafrost boundary in the northeast of the Qinghai-Tibet Plateau (QTP), which is an area highly sensitive to climate change. As a result of increasing global temperatures, the permafrost in this region has undergone significant degradation. In this study, we utilized Sentinel-1 to obtain ground surface deformation data in the SRYR from June 2017 to January 2022. We then analyzed the differences in terrain deformation under various environmental conditions. Our findings indicated an overall subsidence trend in the SRYR, with a long-term deformation velocity of −4.2 mm/a and seasonal deformation of 8.85 mm. Furthermore, the results showed that terrain deformation varied considerably from region to region, and that the Huanghe’ yan sub-basin with the highest permafrost coverage among all sub-basins significantly higher subsidence rates than other regions. Topography strongly influenced ground surface deformation, with flat slopes exhibiting much higher subsidence rates and seasonal deformation. Moreover, the ground temperature and ground ice richness played a certain role in the deformation pattern. This study also analyzed regional deformation details from eight boreholes and one profile line covering different surface conditions, revealing the potential for refining the permafrost boundary. Overall, the results of this study provide valuable insights into the evolution of permafrost in the SRYR region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.