Cadmium is a toxic element with a half-life of several decades, which can accumulate in the human body by entering the food chain and seriously harm health. The cadmium adsorption and desorption processes in the soil directly affect the migration, transformation, bioavailability, and ecotoxicity of this element in soil-plant systems. Coastal zones are located in the transitional zone between land and sea, and large amounts of terrigenous material input have important environmental effects on this ecosystem. The pH, hydrodynamic conditions, soil organic matter (SOM), and other factors defining the sea-land interaction within the sedimentary environment are significantly different from those defining land facies. In order to study the key factors affecting cadmium adsorption in soils at the sea-land interface in the Nansha area of the Pearl River Delta, a test was conducted on a column of undisturbed soil. The results showed that the adsorption constant KF and the Cd2+ adsorption capacity of marine soils were higher than those of terrestrial soils. However, the saturation adsorption of cadmium in terrestrial sediments was higher than in marine sediments. Soil pH was an important factor affecting cadmium adsorption capacity in both terrestrial and ma-rine sediments. Neutral and alkaline topsoil conditions inhibited the vertical migration of cadmium, while the acidic environment favored it. The higher the clay and SOM were, the stronger the Cd2+ adsorption capacity of the soil was. These findings suggest that the distribution of cadmium in marine and continental sedimentary soils is not only related to adsorption, but also to the physical and chemical processes occurring in different sedimentary environments.
Wuhan and its surrounding areas have obvious geothermal spring outcrops, which are unexplored potential geothermal resources. The degree of geothermal resource development in Wuhan is low, and there is a lack of systematic research on their hydrochemical characteristics and formation mechanism. The Wuhan area is bounded by the Xiang-Guang fault, the South Qinling-Dabie orogenic belt in the north, and the Yangtze landmass in the south, with Silurian and Quaternary outcrops and little bedrock outcrops. The Silurian is the main water barrier in the region, which separates the upper Triassic and Paleogene as shallow aquifers and the lower Cambrian and Ordovician as deep aquifers. Different strata are connected by a series of fault structures, which constitute Wuhan’s unique groundwater water-bearing system. Eleven geothermal water (23~52 °C) and six surface water samples (around 22 °C) were collected from the study area. The geothermal water in the study area is weakly alkaline, with a pH of 7.04~8.24. The chemical type of geothermal water is mainly deep SO42− with a higher TDS and shallow HCO3− type water with a lower TDS. Isotopic analysis indicates that atmospheric precipitation and water-rock interaction are the main ionic sources of geothermal water. The chemical composition of geothermal water is dominated by ion-exchange interactions and the dissolution of carbonates and silicates. The characteristic coefficients, correlation analysis, water chemistry type, recharge elevation, geothermal water age, reservoir temperature, and cycle depth were also analyzed. The performance was similar in the same geothermal reservoir, which could be judged as an obviously deep and shallow geothermal fluid reservoir, and the genetic conceptual model of Wuhan geothermal was preliminarily deduced. DXR-8 and DXR-9 had the best reservoir conditions, hydrodynamic conditions, rapid alternation of water bodies, and large circulation depth, which is a favorable location for geothermal resource development and will bring considerable economic and social benefits.
As the particularly popular green energy, geothermal resources are gradually favored by countries around the world, and the development model centered on geothermal dew point cannot meet the increasing geothermal demand. In this paper, a GIS model combining PCA and AHP is proposed, aiming to select the advantages of geothermal resources at the regional scale and analyze the main influencing indicators. Through the combination of the two methods, both data and empirical can be considered, then the geothermal advantage distribution on the area can be displayed through GIS software images. A multi-index evaluation system is established to qualitatively and quantitatively evaluate the mid-high temperature geothermal resources in Jiangxi Province, and carry out the evaluation of the dominant target areas and the analysis of geothermal impact indicators. The results show that it is divided into 7 geothermal resource potential areas and 38 geothermal advantage targets, and the determination of deep fault is the most critical index of geothermal distribution. This method is suitable for large-scale geothermal research, multi-index and multi-data model analysis and precise positioning of high-quality geothermal resource targets, which can meet the needs of geothermal research at the regional scale.
Jiangxi Province is located in the tropical zone of mid-high temperature geothermal resources along the southeastern coast of China. Geothermal geological surveys, the exposed natural hot springs, the explored geothermal walls and the reported geothermal research results related to the potential of geothermal energy indicate the abundant geothermal resources and the high formation potential of mid-high temperature geothermal resources in Jiangxi Province. However, the research level of geothermal resources in this area is relatively low, the distribution of geothermal hotspots is uneven, and the specific resource distribution, geothermal temperature, and resource quantity are not well understood, so it is difficult to systematically carry out the mid-high geothermal development in this province. Therefore, we collect the data of the study area, established a multi-index evaluation model combining experience and data, and carried out the evaluation of geothermal resources advantageous target areas and the analysis of geothermal impact indicators. The main purpose of this study is to use analytic hierarchy process (AHP) and principal component analysis (PCA) to qualitatively and quantitatively evaluate the mid-high temperature geothermal resources of the Jiangxi Province, and also to propose a dual-method comparative evaluation model for the study of the mid-high geothermal target area. Based on the quantitative data from geological, hydrological and geophysical sources and the extensive experience of regional workers and geologists, by using the AHP and PCA, we divide the study area into 7 geothermal resource potential zones and 38 geothermal optimal target areas. It is determined that deep large faults are the most critical indicators affecting the distribution of geothermal resources in the study area, followed by the heat storage value of the silicon enthalpy equation and the magmatic rocks. This study is of great significance for geothermal research in similar areas, multi-index and multi-data model analysis, and accurate positioning of high-quality geothermal resource target areas. It also has important guiding significance for the follow-up development planning of geothermal resources the research area or further research on the geothermal target area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.