Caloric restriction (CR) is known to extend life span across species; however, the molecular mechanisms are not well understood. We investigate the mechanism by which glucose restriction (GR) extends yeast replicative life span, by combining ribosome profiling and RNA-seq with microfluidic-based single-cell analysis. We discovered a cross-talk between glucose sensing and the regulation of intracellular methionine: GR down-regulated the transcription and translation of methionine biosynthetic enzymes and transporters, leading to a decreased intracellular methionine concentration; external supplementation of methionine cancels the life span extension by GR. Furthermore, genetic perturbations that decrease methionine synthesis/uptake extend life span. These observations suggest that intracellular methionine mediates the life span effects of various nutrient and genetic perturbations, and that the glucose-methionine cross-talk is a general mechanism for coordinating the nutrient status and the translation/growth of a cell. Our work also implicates proteasome as a downstream effector of the life span extension by GR.
Au-Pt core-shell nanoparticles have been synthesized on a reduced graphene oxide (RGO) surface by an under-potential deposition (UPD) redox replacement technique, which involves redox replacement of a copper UPD monolayer by PtCl₄²⁻ that could be reduced and deposited simultaneously. Scanning electron microscopy (SEM) and electrochemical methods have been used to characterize the graphene decorated with Au-Pt core-shell nanoparticles. The electrochemical experiments show that the materials exhibit excellent catalytic activity towards the oxygen reduction reaction and the methanol oxidation reaction. It is believed that the high-performance of this new catalyst is due to the ultrathin Pt shell on the Au nanoparticles surface and the oxygen-containing functional groups on the RGO surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.