Stress-induced viscous flow is the characteristic of atomic movements during plastic deformation of metallic glasses in the absence of substantial temperature increase, which suggests that stress state plays an important role in mechanically induced crystallization in a metallic glass. However, it is poorly understood. Here, we report on the stress-induced localized crystallization in individual shear bands of Zr60Al15Ni25 metallic glass subjected to cold rolling. We find that crystallization in individual shear bands preferentially occurs in the regions neighboring the amorphous matrix, where the materials are subjected to compressive stresses demonstrated by our finite element simulations. Our results provide direct evidence that the mechanically induced crystallization kinetics is closely related with the stress state. The crystallization kinetics under compressive and tensile stresses are interpreted within the frameworks of potential energy landscape and classical nucleation theory, which reduces the role of stress state in mechanically induced crystallization in a metallic glass.
The viscoplastic self-consistent (VPSC) model is used to establish a combination of different deformation mechanisms. By using this model, axial tension and compression tests of extruded AZ31 magnesium alloy at room temperature are simulated. The influence of secondary deformation mechanism (prismatic <a> slip, pyramidal <c + a> slip, and 101¯1 compression twin) on mechanical response and texture evolution is expounded. Increased activity of the prismatic <a> slip is conducive for the improvement of flow stress in mechanical response during axial tension and for the splitting of pole densities in the {0002} pole figure during axial compression. However, increased activity of the pyramidal <c + a> slip causes the basal texture to transfer to the extrusion direction in the {0002} pole figure during axial compression. The 101¯1 compression twinning has a negligible influence on the plastic deformation and mechanical response of AZ31 magnesium alloy during axial tension and compression. However, the 101¯1 compression twinning should be included in VPSC modeling to predict the texture evolution accurately.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.