Glucose transporter 1 (GLUT1) plays an important role in the transport and metabolism of glucose in cancer cells. An increasing number of studies have explored the connection between GLUT1 expression and prognosis in non-small cell lung cancer (NSCLC), but the results have been controversial. Therefore, we conducted a meta-analysis to obtain a comprehensive evaluation of the prognostic value of GLUT1 in NSCLC. Relevant studies from PubMed, Embase, and Web of Science were searched. Hazard ratios (HRs) and odds ratios (ORs) with their 95% confidence intervals (CIs) were used as the effective measures. A total of 10 studies involving 1,665 patients were included in this meta-analysis. The results showed that GLUT1 overexpression was associated with poor overall survival (HR = 2.21; 95% CI, 1.42–3.42; p < 0.001) and disease-free survival (HR = 1.73; 95% CI, 1.35–2.23; p < 0.001). Furthermore, elevated GLUT1 expression correlated with sex (OR = 2.29; 95% CI, 1.17–4.49; p = 0.015), advanced tumor stage (OR = 2.46; 95% CI, 1.79–3.38; p < 0.001), histology (OR = 6.99; 95% CI, 4.71–10.38; p < 0.001), and large tumor size (OR = 2.77; 95% CI, 1.73–4.44; p < 0.001). This meta-analysis revealed overexpression of GLUT1 to be a biomarker of worse prognosis in NSCLC.
Ferroptosis is a novel form of regulated cell death characterized by accumulated lipid reactive oxygen species (ROS) and inactivation of glutathione peroxidase 4 (GPX4). The present study aimed to investigate the role of microRNA (miRNA/miR)-15a in ferroptosis of prostate cancer cells. Bioinformatics analysis was performed to predict the potential interaction between miR-15a and the 3'-untranslated region (UTR) of GPX4 mRNA. The prostate cancer cell line, LNCAP was transfected with miR-15a mimics or small interfering (si)-GPX4. Reverse transcription-quantitative PCR and western blot analyses were performed to detect the mRNA and protein expression levels of GPX4, respectively. Biotin-RNA pull-down and dual-luciferase reporter assays were performed to verify the interaction between miR-15a and GPX4 mRNA. The Cell Counting Kit-8 assay was performed to assess cell proliferation, while lactate dehydrogenase (LDH) and intracellular ferrous iron levels were detected via ELISA. Lipid ROS and mitochondrial membrane potential (MMP) were assessed via flow cytometry and staining with C11-BIODIPY probes or JC-1. Furthermore, lipid peroxidation was identified by measuring malondialdehyde (MDA) levels. The results demonstrated that transfection with miR-15a mimics decreased GPX4 protein expression. Bioinformatics analysis revealed potential binding sites between miR-15a and the 3'-UTR region of GPX4, and RNA pull-down and the dual-luciferase reporter assays further confirmed the interaction between miR-15a and GPX4 mRNA. Both transfection with miR-15a mimics and si-GPX4 suppressed cell proliferation, elevated LDH release, accumulated intracellular ferrous iron and ROS, disrupted MMP and increased MDA levels. Taken together, the results of the present study suggest miR-15a induces ferroptosis by regulating GPX4 in prostate cancer cells, which provides evidence for investigating the therapeutic strategies of prostate cancer.
Prostate cancer (PCa) remains a leading cause of mortality among men in the United States and Western Europe. The molecular mechanism of PCa pathogenesis has not been fully elucidated. In the present study, the expression profile of E2F transcription factor 7 (E2F7) in PCa was examined using immunohistochemistry and reverse transcription-quantitative PCR, whilst cell cycle progression and apoptosis were determined using fluorescent cell activated sorting techniques. Cell viability was measured using Cell Counting Kit-8 in loss-and gain-of-function studies. Dual-luciferase reporter assay was used to verify if E2F7 was one of the potential targets of miR-30c. The staining score of E2F7 of PCa tissues was found to be notably higher compared with that of adjacent normal tissues. Suppression of E2F7 expression in PCa cell lines led to significantly reduced proliferation rates, increased proportion of cells in the G 1 phase of the cell cycle and higher apoptotic rates compared with those in negative control groups. Dual-luciferase reporter assay revealed E2F7 to be one of the binding targets of microRNA (miR)-30c. In addition, transfection of miR-30c mimics into PCa cells resulted in reduced cell viability, increased proportion of cells in the G 1 phase and higher apoptotic rates. By contrast, transfection with the miR-30c inhibitor led to lower apoptosis rates of PCa cells compared with negative control groups, whilst E2F7 siRNA co-transfection reversed stimulatory effects of miR-30c inhibitors on cell viability. In addition, the expression of cyclin-dependent kinase inhibitor p21 were found to be upregulated by transfection with either E2F7 siRNA or miR-30c mimics into PCa cells. In conclusion, the present study suggested that E2F7 may be positively associated with PCa cell proliferation by inhibiting p21, whereas E2F7 is in turn under regulation by miR-30c. These observations suggest the miR-30c/E2F7/p21 axis to be a viable therapeutic target for PCa.
In this study, we compared the registration effectiveness of 4D cone-beam computed tomography (CBCT) and 3D-CBCT for image-guided radiotherapy in 20 Stage IA non–small-cell lung cancer (NSCLC) patients. Patients underwent 4D-CBCT and 3D-CBCT immediately before radiotherapy, and the X-ray Volume Imaging software system was used for image registration. We performed automatic bone registration and soft tissue registration between 4D-CBCT or 3D-CBCT and 4D-CT images; the regions of interest (ROIs) were the vertebral body on the layer corresponding to the tumor and the internal target volume region. The relative displacement of the gross tumor volume between the 4D-CBCT end-expiratory phase sequence and 4D-CT was used to evaluate the registration error. Among the 20 patients (12 males, 8 females; 35–67 years old; median age, 52 years), 3 had central NSCLC and 17 had peripheral NSCLC, 8 in the upper or middle lobe and 12 in the lower lobe (maximum tumor diameter range, 18–27 mm). The internal motion range in three-dimensional space was 12.52 ± 2.65 mm, accounting for 47.8 ± 15.3% of the maximum diameter of each tumor. The errors of image-guided registration using 4D-CBCT and 3D-CBCT on the x (left–right), y (superior–inferior), z (anterior–posterior) axes, and 3D space were 0.80 ± 0.21 mm and 1.08 ± 0.25 mm, 2.02 ± 0.46 mm and 3.30 ± 0.53 mm, 0.52 ± 0.16 mm and 0.85 ± 0.24 mm, and 2.25 ± 0.44 mm and 3.59 ± 0.48 mm (all P < 0.001), respectively. Thus, 4D-CBCT is preferable to 3D-CBCT for image guidance in small pulmonary tumors because 4D-CBCT can reduce the uncertainty in the tumor location resulting from internal motion caused by respiratory movements, thereby increasing the image-guidance accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.