Inflammation is a biological response of the immune system that can be triggered by a variety of factors, including pathogens, damaged cells and toxic compounds. These factors may induce acute and/or chronic inflammatory responses in the heart, pancreas, liver, kidney, lung, brain, intestinal tract and reproductive system, potentially leading to tissue damage or disease. Both infectious and non-infectious agents and cell damage activate inflammatory cells and trigger inflammatory signaling pathways, most commonly the NF-κB, MAPK, and JAK-STAT pathways. Here, we review inflammatory responses within organs, focusing on the etiology of inflammation, inflammatory response mechanisms, resolution of inflammation, and organ-specific inflammatory responses.
Viral infection is controlled by host innate immune cells that express specialized receptors for viral components. Engagement of these pattern recognition receptors triggers a series of signaling pathways that culminate in the production of antiviral mediators such as type I interferons. Mitochondrial antiviral-signaling protein (MAVS) acts as a central hub for signal transduction initiated by RIG-I-like receptors, which predominantly recognize viral RNA. MAVS expression and function are regulated by both post-transcriptional and post-translational mechanisms, of which ubiquitination and phosphorylation play the most important roles in modulating MAVS function. Increasing evidence indicates that viruses can escape the host antiviral response by interfering at multiple points in the MAVS signaling pathways, thereby maintaining viral survival and replication. This review summarizes recent studies on the mechanisms by which MAVS expression and signaling are normally regulated and on the various strategies employed by viruses to antagonize MAVS activity, which may provide new insights into the design of novel antiviral agents.
The morphological and cytochemical studies of peripheral blood cells of Schizothorax prenanti were studied by light and electron microscopy. Erythrocytes, thrombocytes and three types of leucocytes, lymphocytes, neutrophils and monocytes, were distinguished and characterized. In addition to mature erythrocytes, immature and dividing erythrocytes were observed. A few organelles such as mitochondria were distributed in the cytoplasm of erythrocytes. Lymphocytes with heavily clumped heterochromatic nucleus and minimal cytoplasm were classified into small and large lymphocytes. Three different populations of granules, with distinctive ultrastructural aspect, were observed in neutrophils. Monocytes were the fewest leucocytes possessing rich organelles, phagocytized materials and vacuoles. Thrombocytes with various types were the most abundant blood cells among leucocytes and contained a prominent nucleus with dense bands of heterochromatin and many cytoplasmic vacuoles. Periodic acid-Schiff staining was positive in neutrophils, monocytes, lymphocytes and thrombocytes, but not in erythrocytes. Peroxidase-positive staining was observed in neutrophils and monocytes, but not in erythrocytes, lymphocytes and thrombocytes. Only neutrophils were positive for oil red O. Except for erythrocytes, the other blood cells stained positively for acid phosphatase. Only neutrophils and monocytes were positive for α-naphthyl acetate esterase. None of the cells studied were positive for alkaline phosphatase. The morphologic and cytochemical features of blood cells of S. prenanti are similar to those of other fish. This investigation may be helpful as a tool to monitor the health status of cultured S. prenanti and will grant early detection of clinical pathology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.