Recent evidences have unveiled critical roles of cancer stem cells (CSCs) in tumorigenicity, but how interactions between CSC and tumor environments help maintain CSC initiation remains obscure. The small GTPases Rab27A regulates autocrine and paracrine cytokines by monitoring exocytosis of extracellular vesicles, and is reported to promote certain tumor progression. We observe that overexpression of Rab27A increased sphere formation efficiency (SFE) by increasing the proportion of CD44+ and PKH26high cells in HT29 cell lines, and accelerating the growth of colosphere with higher percentage of cells at S phase. Mechanism study revealed that the supernatant derived from HT29 sphere after Rab27A overexpression was able to expand sphere numbers with elevated secretion of VEGF and TGF-β. In tumor implanting nude mice model, tumor initiation rates and tumor sizes were enhanced by Rab27A with obvious angiogenesis. As a contrast, knocking down Rab27A impaired the above effects. More importantly, the correlation between higher p65 level and Rab27A in colon sphere was detected, p65 was sufficient to induce up-regulation of Rab27A and a functional NF-κB binding site in the Rab27A promoter was demonstrated. Altogether, our findings reveal a unique mechanism that tumor environment related NF-κB signaling promotes various colon cancer stem cells (cCSCs) properties via an amplified paracrine mechanism regulated by higher Rab27A level.
Erythrodiol, a typical pentacyclic triterpenic diol in olive oil and its byproduct, olive pomace, frequently appears in food additives for the prevention of cardiovascular diseases because of its antioxidation, anti-inflammatory, and antitumor activities.To develop new derivatives of erythrodiol (1), preparative biotransformations were investigated through Streptomyces griseus ATCC 13273, Penicilium griseofulvum CICC 40293, and Bacillus subtilis ATCC 6633, and ten new (1a−1j) and one known metabolites were isolated. Their structures were elucidated by high resolution electrospray ionization mass spectrometry (HR-ESI-MS) and onedimensional (1D) and two-dimensional (2D) nuclear magnetic resonance (NMR) spectroscopy. Furthermore, relative to 1, most metabolites exhibited lower toxicity and more potent inhibitory activities against nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. In particular, the glycosylated metabolite 1k showed a dramatically increased inhibitory effect with an IC 50 value of 2.40 μM, which is even lower than that of quercetin. Thus, biotransformation of erythrodiol is a viable strategy for discovering new triterpenes as food supplements with anti-inflammatory properties.
For the optimum use of soyasaponins isolated from soybean cake and to explore the potential anti-inflammatory agents from pentacyclic triterpenes as natural food supplements, microbial transformation of soyasapogenol A was carried out. Four strains of microbes, including Bacillus megaterium CGMCC 1.1741, Penicillium griseofulvum CICC 40293, Bacillus subtilis ATCC 6633, and Streptomyces griseus ATCC 13273, showed robust catalytic capacity to the substrate. Preparative biotransformation and column chromatographic purification led to the isolation of 10 novel and 1 reported metabolites. The structure elucidation was performed using 1D/2D NMR and HR-ESI-MS analytical method. Several novel tailoring reactions, such as allyl oxidation, C–C double bond rearrangement, hydroxylation, dehydrogenation, and glycosylation, were observed in the biotransformation. In the follow-up bioassay, most of the metabolites exhibited low cytotoxicity and potent inhibitory activity against the production of nitric oxide (NO) in RAW 264.7 cells stimulated by lipopolysaccharide. Especially compound 6 (3-oxo-11α,21β,22β,24-tetrahydroxy-olean-12-ene) showed comparable activity to the positive control of quercetin with an IC50 value of 16.70 μM. These findings provided an experimental approach to achieve the derivatization of natural aglycons in soybeans through microbial transformation for developing potent anti-inflammatory food supplements.
A series of C-3 and C-28 MeON-neoglycosides of oleanolic acid were designed and synthesized by neoglycosylation as potential antiproliferative agents. Their cytotoxicity was evaluated in vitro against five human cancer cell lines: human non-small cell lung cancer cell line (A549), human melanoma cell line (A375), human colon cancer cell line (HCT116), human liver carcinoma cell line (HepG2), human breast adenocarcinoma cell line (MCF-7) by the Cell Counting Kit-8 (CCK-8) assay. Most of C-3 and C-28 MeON-neoglycosides of oleanolic acid exhibited notably inhibitory effects against the tested cancer cells and more sensitive to HepG2 cells than 5-Fluorouracil (5-FU). Structure-activities relationship (SAR) analysis revealed that sugar types and the d/l configuration of sugars would significantly affect their antiproliferative activities of neoglycosides. Among them, compound 8a (28-N-methoxyaminooleanane-β-d-glucoside) exhibited the most potent antiproliferative activities against HepG2 cells with IC50 values of 2.1 µM. Further pharmacological experiments revealed that compound 8a could cause morphological changes and cell cycle arrest at G0/G1 phase and induce apoptosis in HepG2 cells. These results suggested that neoglycosylation could provide a rapid strategy for the discovery of potential antiproliferative agents and their possible pharmacological mechanisms need more further research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.