Using polypropylene fiber (PPF) and nano clay modified lime treated soil (LS), the static and dynamic properties of fiber modified lime treated soil (FLS), nano clay modified lime treated soil (NLS), and fiber nano clay composite modified lime treated soil (NFLS) were studied. Through the unconfined compressive strength (UCS) test and dynamic triaxial test of FLS, NLS, and NFLS, the static and dynamic elastic modulus characteristics at 7 day curing age were explored, and the damage stress–strain model was established. The results show that: (1) Polypropylene fiber and nano clay can significantly enhance the mechanical properties of NFLS. Nano clay can promote the reaction between lime and soil to produce calcium silicate hydrate (C-S-H) and calcium aluminate hydrate (C-A-H), thus improving the strength of NFLS, and UCS can be increased by up to 103%. Polypropylene fiber can enhance the ductility of NFLS and increase the residual ductility strength, and the residual strength can be increased by 827%. (2) Nano clay can enhance the static and dynamic elastic modulus of modified lime treated soil. The static and dynamic elastic modulus of NLS, FLS, and NFLS are linear with the change of polypropylene fiber and nano clay content. The static and dynamic elastic modulus of NLS, FLS, and NFLS are linear, exponential, and logarithmic, respectively. (3) The mesoscopic random damage model can characterize the stress–strain relationship of NFLS. Polypropylene fiber and nano clay can improve the ductility and strength of modified LS, and the composite addition of polypropylene fiber and nano clay can improve the ability of modified LS to resist damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.