INTRODUCTION The Saccharomyces cerevisiae 2.0 project (Sc2.0) aims to modify the yeast genome with a series of densely spaced designer changes. Both a synthetic yeast chromosome arm (synIXR) and the entirely synthetic chromosome (synIII) function with high fitness in yeast. For designer genome synthesis projects, precise engineering of the physical sequence to match the specified design is important for the systematic evaluation of underlying design principles. Yeast can maintain nuclear chromosomes as rings, occurring by chance at repeated sequences, although the cyclized format is unfavorable in meiosis given the possibility of dicentric chromosome formation from meiotic recombination. Here, we describe the de novo synthesis of synthetic yeast chromosome V (synV) in the “Build-A-Genome China” course, perfectly matching the designer sequence and bearing loxPsym sites, distinguishable watermarks, and all the other features of the synthetic genome. We generated a ring synV derivative with user-specified cyclization coordinates and characterized its performance in mitosis and meiosis. RATIONALE Systematic evaluation of underlying Sc2.0 design principles requires that the final assembled synthetic genome perfectly match the designed sequence. Given the size of yeast chromosomes, synthetic chromosome construction is performed iteratively, and new mutations and unpredictable events may occur during synthesis; even a very small number of unintentional nucleotide changes across the genome could have substantial effects on phenotype. Therefore, precisely matching the physical sequence to the designed sequence is crucial for verification of the design principles in genome synthesis. Ring chromosomes can extend those design principles to provide a model for genomic rearrangement, ring chromosome evolution, and human ring chromosome disorders. RESULTS We chemically synthesized, assembled, and incorporated designer chromosome synV (536,024 base pairs) of S. cerevisiae according to Sc2.0 principles, based on the complete nucleotide sequence of native yeast chromosome V (576,874 base pairs). This work was performed as part of the “Build-A-Genome China” course in Tianjin University. We corrected all mutations found—including duplications, substitutions, and indels—in the initial synV strain by using integrative cotransformation of the precise desired changes and by means of a clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)–based method. Altogether, 3331 corrected base pairs were required to match to the designed sequence. We generated a strain that exactly matches all designer sequence changes that displays high fitness under a variety of culture conditions. All corrections were verified with whole-genome sequencing; RNA sequencing revealed only minor changes in gene expression—most notably, decreases in expression of genes relocated near synthetic telomeres as a result of design. We constructed a functional circular synV (ring_synV) derivative in yeast by precisely joining both chromosome ends (telomeres) at specified coordinates. The ring chromosome showed restoration of subtelomeric gene expression levels. The ring_synV strain exhibited fitness comparable with that of the linear synV strain, revealed no change in sporulation frequency, but notably reduced spore viability. In meiosis, heterozygous or homozygous diploid ring_wtV and ring_synV chromosomes behaved similarly, exhibiting substantially higher frequency of the formation of zero-spore tetrads, a type that was not seen in the rod chromosome diploids. Rod synV chromosomes went through meiosis with high spore viability, despite no effort having been made to preserve meiotic competency in the design of synV. CONCLUSION The perfect designer-matched synthetic chromosome V provides strategies to edit sequence variants and correct unpredictable events, such as off-target integration of extra copies of synthetic DNA elsewhere in the genome. We also constructed a ring synthetic chromosome derivative and evaluated its fitness and stability in yeast. Both synV and synVI can be circularized and can power yeast cell growth without affecting fitness when gene content is maintained. These fitness and stability phenotypes of the ring synthetic chromosome in yeast provide a model system with which to probe the mechanism of human ring chromosome disorders. Synthesis, cyclization, and characterization of synV . ( A ) Synthetic chromosome V (synV, 536,024 base pairs) was designed in silico from native chromosome V (wtV, 576,874 base pairs), with extensive genotype modification designed to be phenotypically neutral. ( B ) CRISPR/Cas9 strategy for multiplex repair. ( C ) Colonies of wtV, synV, and ring_synV strains.
Summary Safflower (Carthamus tinctorius L.), a member of the Asteraceae, is a popular crop due to its high linoleic acid (LA) and flavonoid (such as hydroxysafflor yellow A) contents. Here, we report the first high‐quality genome assembly (contig N50 of 21.23 Mb) for the 12 pseudochromosomes of safflower using single‐molecule real‐time sequencing, Hi‐C mapping technologies and a genetic linkage map. Phyloge nomic analysis showed that safflower diverged from artichoke (Cynara cardunculus) and sunflower (Helianthus annuus) approximately 30.7 and 60.5 million years ago, respectively. Comparative genomic analyses revealed that uniquely expanded gene families in safflower were enriched for those predicted to be involved in lipid metabolism and transport and abscisic acid signalling. Notably, the fatty acid desaturase 2 (FAD2) and chalcone synthase (CHS) families, which function in the LA and flavonoid biosynthesis pathways, respectively, were expanded via tandem duplications in safflower. CarFAD2‐12 was specifically expressed in seeds and was vital for high‐LA content in seeds, while tandemly duplicated CarFAD2 genes were up‐regulated in ovaries compared to CarFAD2‐12, which indicates regulatory divergence of FAD2 in seeds and ovaries. CarCHS1, CarCHS4 and tandem‐duplicated CarCHS5˜CarCHS6, which were up‐regulated compared to other CarCHS members at early stages, contribute to the accumulation of major flavonoids in flowers. In addition, our data reveal multiple alternative splicing events in gene families related to fatty acid and flavonoid biosynthesis. Together, these results provide a high‐quality reference genome and evolutionary insights into the molecular basis of fatty acid and flavonoid biosynthesis in safflower.
Cytoplasmic male sterility (CMS) determined by mitochondrial genes and restorer of fertility ( Rf ) controlled by nuclear-encoded genes provide the breeding systems of many hybrid crops for the utilization of heterosis. Although several CMS/ Rf systems have been widely exploited in rice, hybrid breeding using these systems has encountered difficulties due to either fertility instability or complications of two-locus inheritance or both. In this work, we characterized a type of CMS, Fujian Abortive cytoplasmic male sterility (CMS-FA), with stable sporophytic male sterility and a nuclear restorer gene that completely restores hybrid fertility. CMS is caused by the chimeric open reading frame FA182 that specifically occurs in the mitochondrial genome of CMS-FA rice. The restorer gene OsRf19 encodes a pentatricopeptide repeat (PPR) protein targeted to mitochondria, where it mediates the cleavage of FA182 transcripts, thus restoring male fertility. Comparative sequence analysis revealed that OsRf19 originated through a recent duplication in wild rice relatives, sharing a common ancestor with OsRf1a / OsRf5 , a fertility restorer gene for Boro II and Hong-Lian CMS. We developed six restorer lines by introgressing OsRf19 into parental lines of elite CMS-WA hybrids; hybrids produced from these lines showed equivalent or better agronomic performance relative to their counterparts based on the CMS-WA system. These results demonstrate that CMS-FA/ OsRf19 provides a highly promising system for future hybrid rice breeding.
Understanding and exploiting genetic diversity is a key factor for the productive and stable production of rice. Here, we utilize 73 high-quality genomes that encompass the subpopulation structure of Asian rice (Oryza sativa), plus the genomes of two wild relatives (O. rufipogon and O. punctata), to build a pan-genome inversion index of 1769 non-redundant inversions that span an average of ~29% of the O. sativa cv. Nipponbare reference genome sequence. Using this index, we estimate an inversion rate of ~700 inversions per million years in Asian rice, which is 16 to 50 times higher than previously estimated for plants. Detailed analyses of these inversions show evidence of their effects on gene expression, recombination rate, and linkage disequilibrium. Our study uncovers the prevalence and scale of large inversions (≥100 bp) across the pan-genome of Asian rice and hints at their largely unexplored role in functional biology and crop performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.