The main source of urban waste is the daily life activities of residents, and the waste sorting of residents’ waste is important for promoting economic recycling, reducing labor costs, and protecting the environment. However, most residents are unable to make accurate judgments about the categories of household waste, which severely limits the efficiency of waste sorting. We have designed an intelligent waste bin that enables automatic waste sorting and recycling, avoiding the extensive knowledge required for waste sorting. To ensure that the waste-classification model is high accuracy and works in real time, GECM-EfficientNet is proposed based on EfficientNet by streamlining the mobile inverted bottleneck convolution (MBConv) module, introducing the efficient channel attention (ECA) module and coordinate attention (CA) module, and transfer learning. The accuracy of GECM-EfficientNet reaches 94.54% and 94.23% on the self-built household waste dataset and TrashNet dataset, with parameters of only 1.23 M. The time of one recognition on the intelligent waste bin is only 146 ms, which satisfies the real-time classification requirement. Our method improves the computational efficiency of the waste-classification model and simplifies the hardware requirements, which contributes to the residents’ waste classification based on intelligent devices.
This study aims at improving the efficiency of remote sensing scene classification (RSSC) through lightweight neural networks and to provide a possibility for large-scale, intelligent and real-time computation in performing RSSC for common devices. In this study, a lightweight RSSC model is proposed, which is named RSCNet. First, we use the lightweight ShuffleNet v2 network to extract the abstract features from the images, which can guarantee the efficiency of the model. Then, the weights of the backbone are initialized using transfer learning, allowing the model to learn by drawing on the knowledge of ImageNet. Second, to further improve the classification accuracy of the model, we propose to combine ShuffleNet v2 with an efficient channel attention mechanism that allows the features of the input classifier to be weighted. Third, we use a regularization technique during the training process, which utilizes label smoothing regularization to replace the original loss function. The experimental results show that the classification accuracy of RSCNet is 96.75% and 99.05% on the AID and UCMerced_LandUse datasets, respectively. The floating-point operations (FLOPs) of the proposed model are only 153.71 M, and the time spent for a single inference on the CPU is about 2.75 ms. Compared with existing RSSC methods, RSCNet achieves relatively high accuracy at a very small computational cost.
We aimed to research the design and path-planning methods of an intelligent disinfection-vehicle system. A ROS (robot operating system) system was utilized as the control platform, and SLAM (simultaneous localization and mapping) technology was used to establish an indoor scene map. On this basis, a new path-planning method combining the A* algorithm and the Floyd algorithm is proposed to ensure the safety, efficiency, and stability of the path. Simulation results show that with the average shortest distance between obstacles and paths of 0.463, this algorithm reduces the average numbers of redundant nodes and turns in the path by 70.43% and 31.1%, respectively, compared to the traditional A* algorithm. The algorithm has superior performance in terms of safety distance, path length, and redundant nodes and turns. Additionally, a mask recognition and pedestrian detection algorithm is utilized to ensure public safety. The results of the study indicate that the method has satisfactory performance. The intelligent disinfection-vehicle system operates stably, meets the indoor mapping requirements, and can recognize pedestrians and masks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.