The intercalation of potassium ions into graphite is demonstrated to be feasible, while the electrochemical performance of potassium-ion batteries (KIBs) remains unsatisfying. More effort is needed to improve the specific capacity while maintaining a superior rate capability. As an attempt, nitrogen/oxygen dual-doped hierarchical porous hard carbon (NOHPHC) is introduced as the anode in KIBs by carbonizing and acidizing the NH -MIL-101(Al) precursor. Specifically, the NOHPHC electrode delivers high reversible capacities of 365 and 118 mA h g at 25 and 3000 mA g , respectively. The capacity retention reaches 69.5% at 1050 mA g for 1100 cycles. The reasons for the enhanced electrochemical performance, such as the high capacity, good cycling stability, and superior rate capability, are analyzed qualitatively and quantitatively. Quantitative analysis reveals that mixed mechanisms, including capacitance and diffusion, account for the K-ion storage, in which the capacitance plays a more important role. Specifically, the enhanced interlayer spacing (0.39 nm) enables the intercalation of large K ions, while the high specific surface area of ≈1030 m g and the dual-heteroatom doping (N and O) are conducive to the reversible adsorption of K ions.
Binary metal oxides have been regarded as ideal and potential anode materials, which can ameliorate and offset the electrochemical performance of the single metal oxides, such as reversible capacity, structural stability and electronic conductivity. In this work, monodisperse NiCo(2)O(4) mesoporous microspheres are fabricated by a facile solvothermal method followed by pyrolysis of the Ni(0.33)Co(0.67)CO(3) precursor. The Brunauer-Emmett-Teller (BET) surface area of NiCo(2)O(4) mesoporous microspheres is determined to be about 40.58 m(2) g(-1) with dominant pore diameter of 14.5 nm and narrow size distribution of 10-20 nm. Our as-prepared NiCo(2)O(4) products were evaluated as the anode material for the lithium-ion-battery (LIB) application. It is demonstrated that the special structural features of the NiCo(2)O(4) microspheres including uniformity of the surface texture, the integrity and porosity exert significant effect on the electrochemical performances. The discharge capacity of NiCo(2)O(4) microspheres could reach 1198 mA h g(-1) after 30 discharge-charge cycles at a current density of 200 mA g(-1). More importantly, when the current density increased to 800 mA·g(-1), it can render reversible capacity of 705 mA h g(-1) even after 500 cycles, indicating its potential applications for next-generation high power lithium ion batteries (LIBs). The superior battery performance is mainly attributed to the unique micro/nanostructure composed of interconnected NiCo(2)O(4) nanocrystals, which provides good electrolyte diffusion and large electrode-electrolyte contact area, and meanwhile reduces volume change during charge/discharge process. The strategy is simple but very effective, and because of its versatility, it could be extended to other high-capacity metal oxide anode materials for LIBs.
The ever‐increasing demand for large‐scale energy storage systems requires novel battery technologies with low‐cost and sustainable properties. Due to earth‐abundance and cost effectiveness, the development of rechargeable potassium ion batteries (PIBs) has recently attracted much attention. Since carbon‐based materials are abundant, inexpensive, nontoxic, and safe, extensive feasibility investigations have suggested that they can become promising anode materials for PIBs. This review not only attempts to provide better understanding of the potassium storage mechanism, but also summarizes the availability of new carbon‐based materials and their electrochemical performance covering graphite, graphene, and hard carbon materials plus carbon‐based composites. Finally, the critical issues, challenges, and perspectives are discussed to demonstrate the developmental direction of PIBs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.