Alternative splicing is a tightly regulated biological process by which the number of gene products for any given gene can be greatly expanded. Genomic variants in splicing regulatory sequences can disrupt splicing and cause disease. Recent developments in sequencing technologies and computational biology have allowed researchers to investigate alternative splicing at an unprecedented scale and resolution. Population-scale transcriptome studies have revealed many naturally occurring genetic variants that modulate alternative splicing and consequently influence phenotypic variability and disease susceptibility in human populations. Innovations in experimental and computational tools such as massively parallel reporter assays and deep learning have enabled the rapid screening of genomic variants for their causal impacts on splicing. In this review, we describe technological advances that have greatly increased the speed and scale at which discoveries are made about the genetic variation of alternative splicing. We summarize major findings from population transcriptomic studies of alternative splicing and discuss the implications of these findings for human genetics and medicine.
We reported an integrated database of Compendium of Protein Lysine Modifications (CPLM; http://cplm.biocuckoo.org) for protein lysine modifications (PLMs), which occur at active ε-amino groups of specific lysine residues in proteins and are critical for orchestrating various biological processes. The CPLM database was updated from our previously developed database of Compendium of Protein Lysine Acetylation (CPLA), which contained 7151 lysine acetylation sites in 3311 proteins. Here, we manually collected experimentally identified substrates and sites for 12 types of PLMs, including acetylation, ubiquitination, sumoylation, methylation, butyrylation, crotonylation, glycation, malonylation, phosphoglycerylation, propionylation, succinylation and pupylation. In total, the CPLM database contained 203 972 modification events on 189 919 modified lysines in 45 748 proteins for 122 species. With the dataset, we totally identified 76 types of co-occurrences of various PLMs on the same lysine residues, and the most abundant PLM crosstalk is between acetylation and ubiquitination. Up to 53.5% of acetylation and 33.1% of ubiquitination events co-occur at 10 746 lysine sites. Thus, the various PLM crosstalks suggested that a considerable proportion of lysines were competitively and dynamically regulated in a complicated manner. Taken together, the CPLM database can serve as a useful resource for further research of PLMs.
New strategies for the construction of versatile nanovehicles to overcome the multiple challenges of targeted delivery are urgently needed for cancer therapy. To address these needs, we developed a novel targeting-clickable and tumor-cleavable polyurethane nanomicelle for multifunctional delivery of antitumor drugs. The polyurethane was synthesized from biodegradable poly(ε-caprolactone) (PCL) and L-lysine ethyl ester diisocyanate (LDI), further extended by a new designed L-cystine-derivatized chain extender bearing a redox-responsive disulfide bond and clickable alkynyl groups (Cys-PA), and finally terminated by a detachable methoxyl-poly(ethylene glycol) with a highly pH-sensitive benzoic-imine linkage (BPEG). The obtained polymers show attractive self-assembly characteristics and stimuli-responsiveness, good cytocompatibility, and high loading capacity for doxorubicin (DOX). Furthermore, folic acid (FA) as a model targeting ligand was conjugated to the polyurethane micelles via an efficient click reaction. The decoration of FA results in an enhanced cellular uptake and improved drug efficacy toward FA-receptor positive HeLa cancer cells in vitro. As a proof-of-concept, this work provides a facile approach to the design of extracellularly activatable nanocarriers for tumor-targeted and programmed intracellular drug delivery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.