Elastic gluon-gluon-quark (gluon-gluon-antiquark) scattering is studied in perturbative QCD with 123 Feynman diagrams at the tree level. Individually squared amplitudes and interference terms of the Feynman diagrams are derived. With the elastic gluon-gluon-quark scattering and the elastic gluon-gluon-antiquark scattering transport equations are established. In the thermalization process of initially created quark-gluon matter, this matter is governed by elastic 2-to-2 scattering and elastic 3-to-3 scattering. Solutions of the transport equations show that initially created quark-gluon matter takes early thermalization, i.e., thermal states are established rapidly. Different thermalization times of gluon matter and quark matter are obtained.
Two-dimensional metasurface structures have recently been proposed to reduce the challenges of fabrication of traditional plasmonic metamaterials. However, complex designs and sophisticated fabrication procedures are still required. Here, we present a unique one-dimensional (1-D) metasurface based on bilayered metallic nanowire gratings, which behaves as an ideal polarized beam splitter, producing strong negative reflection for transverse-magnetic (TM) light and efficient reflection for transverse-electric (TE) light. The large anisotropy resulting from this TE-metal-like/TM-dielectric-like feature can be explained by the dispersion curve based on the Bloch theory of periodic metal-insulator-metal waveguides. The results indicate that this photon manipulation mechanism is fundamentally different from those previously proposed for 2-D or 3-D metastructures. Based on this new material platform, a novel form of metasurface holography is proposed and demonstrated, in which an image can only be reconstructed by using a TM light beam. By reducing the metamaterial structures to 1-D, our metasurface beam splitter exhibits the qualities of cost-efficient fabrication, robust performance, and high tunability, in addition to its applicability over a wide range of working wavelengths and incident angles. This development paves a foundation for metasurface structure designs towards practical metamaterial applications.
We present a 1D/2D switchable grating based on field-induced polymer stabilized blue phase liquid crystal (PSBPLC). For 1D grating, the diffraction efficiency of the first order is 37.2% and the phase modulation depth of the 1D grating can achieve 2π. For 2D grating, more than 90% of light intensity is distributed to the surrounding orders of zero order and the phase modulation depth is about 3.67π. Furthermore it shows fast phase modulation and 1D/2D switching time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.