Long-term stability remains a key issue impeding the commercialization of halide perovskite solar cells (HPVKSCs). The diffusion of molecules and ions causes irreversible degradation to photovoltaic device performance. Here, we demonstrate a facile strategy for producing highly stable HPVKSCs by using a thin but compact semimetal Bismuth interlayer. The Bismuth film acts as a robust permeation barrier that both insulates the perovskite from intrusion by undesirable external moisture and protects the metal electrode from iodine corrosion. The Bismuth-interlayer-based devices exhibit greatly improved stability when subjected to humidity, thermal and light stresses. The unencapsulated device retains 88% of its initial efficiency in ambient air in the dark for over 6000 h; the devices maintain 95% and 97% of their initial efficiencies after 85 °C thermal aging and light soaking in nitrogen atmosphere for 500 h, respectively. These sound stability parameters are among the best for planar structured HPVKSCs reported to date.
Organic light emitting diodes (OLEDs) employing organic thin‐film based emitters have attracted tremendous attention due to their widespread applications in lighting and as displays in mobile devices and televisions. The novel thin‐film photovoltaic techniques using organic or organic–inorganic hybrid materials such as organic photovoltaics (OPVs) and perovskite solar cells (PSCs) have become emerging competitive candidates with regard to the traditional photovoltaic techniques on account of high‐efficiency, low‐cost, and simple manufacturing processing properties. However, OLEDs, OPVs, and PSCs are vulnerable to the undesired degradation induced by moisture and oxygen. To afford long‐term stability, a robust encapsulation technique by employing materials and structures that possess high barrier performance against oxygen and moisture must be explored and employed to protect these devices. Herein, the recent progress on specific encapsulation materials and techniques for three types of devices on the basis of fundamental understanding of device stability is reviewed. First, their degradation mechanisms, as well as, influencing factors are discussed. Then, the encapsulation technologies and materials are classified and discussed. Moreover, the advantages and disadvantages of various encapsulation technologies and materials coupled with their encapsulation applications in different devices are compared. Finally, the ongoing challenges and future perspectives of encapsulation frontier are provided.
Nowadays, the integrated systems on a plane substrate containing energy harvesting, energy storing, and working units are strongly desired with the fast development of wearable and portable devices. Here, a simple, low cost, and scalable strategy involving ink printing and electrochemical deposition is proposed to fabricate a flexible integrated system on a plane substrate containing an all-solid-state asymmetric microsupercapacitor (MSC), a photoconduct-type photodetector of perovskite nanowires (NWs), and a wireless charging coil. In the asymmetric MSCs, MnO-PPy and VO-PANI composites are used as positive and negative electrodes, respectively. Typical values of energy density in the range of 15-20 mWh cm at power densities of 0.3-2.5 W cm with an operation potential window of 1.6 V are achieved. In the system, the wireless charging coil receives energy from a wireless power transmitter, which then can be stored in the MSC to drive the photoconductive detector of perovskite NWs in sequence. The designed integrated system exhibits a stable photocurrent response comparable with the detector driven by an external power source. This research provides an important routine to fabricate integrated systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.