Lithium–sulfur (Li–S) batteries have attracted much attention in the field of electrochemical energy storage due to their high energy density and low cost. However, the “shuttle effect” of the sulfur cathode, resulting in poor cyclic performance, is a big barrier for the development of Li–S batteries. Herein, a novel sulfur cathode integrating sulfur, flexible carbon cloth, and metal–organic framework (MOF)‐derived N‐doped carbon nanoarrays with embedded CoP (CC@CoP/C) is designed. These unique flexible nanoarrays with embedded polar CoP nanoparticles not only offer enough voids for volume expansion to maintain the structural stability during the electrochemical process, but also promote the physical encapsulation and chemical entrapment of all sulfur species. Such designed CC@CoP/C cathodes with synergistic confinement (physical adsorption and chemical interactions) for soluble intermediate lithium polysulfides possess high sulfur loadings (as high as 4.17 mg cm–2) and exhibit large specific capacities at different C‐rates. Specially, an outstanding long‐term cycling performance can be reached. For example, an ultralow decay of 0.016% per cycle during the whole 600 cycles at a high current density of 2C is displayed. The current work provides a promising design strategy for high‐energy‐density Li–S batteries.
Porous Mn 2 O 3 microspheres have been synthesized by morphology-controlled decomposition of spherical MnCO 3 precursors at 600 uC. The porous Mn 2 O 3 microspheres show a good rate capability and a high specific capacity of 796 mA h g 21 after 50 cycles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.