The first general catalytic approach to effecting transfer hydrogenation (TH) of unactivated alkenes using ethanol as the hydrogen source is described. A new NCP-type pincer iridium complex (-NCP)IrHCl containing a rigid benzoquinoline backbone has been developed for efficient, mild TH of unactivated C-C multiple bonds with ethanol, forming ethyl acetate as the sole byproduct. A wide variety of alkenes, including multisubstituted alkyl alkenes, aryl alkenes, and heteroatom-substituted alkenes, as well as O- or N-containing heteroarenes and internal alkynes, are suitable substrates. Importantly, the (-NCP)Ir/EtOH system exhibits high chemoselectivity for alkene hydrogenation in the presence of reactive functional groups, such as ketones and carboxylic acids. Furthermore, the reaction with CDOD provides a convenient route to deuterium-labeled compounds. Detailed kinetic and mechanistic studies have revealed that monosubstituted alkenes (e.g., 1-octene, styrene) and multisubstituted alkenes (e.g., cyclooctene (COE)) exhibit fundamental mechanistic difference. The OH group of ethanol displays a normal kinetic isotope effect (KIE) in the reaction of styrene, but a substantial inverse KIE in the case of COE. The catalysis of styrene or 1-octene with relatively strong binding affinity to the Ir(I) center has (-NCP)Ir(alkene) adduct as an off-cycle catalyst resting state, and the rate law shows a positive order in EtOH, inverse first-order in styrene, and first-order in the catalyst. In contrast, the catalysis of COE has an off-cycle catalyst resting state of (-NCP)Ir(H)[O(Et)···HO(Et)···HOEt] that features a six-membered iridacycle consisting of two hydrogen-bonds between one EtO ligand and two EtOH molecules, one of which is coordinated to the Ir(III) center. The rate law shows a negative order in EtOH, zeroth-order in COE, and first-order in the catalyst. The observed inverse KIE corresponds to an inverse equilibrium isotope effect for the pre-equilibrium formation of (-NCP)Ir(H)(OEt) from the catalyst resting state via ethanol dissociation. Regardless of the substrate, ethanol dehydrogenation is the slow segment of the catalytic cycle, while alkene hydrogenation occurs readily following the rate-determining step, that is, β-hydride elimination of (-NCP)Ir(H)(OEt) to form (-NCP)Ir(H) and acetaldehyde. The latter is effectively converted to innocent ethyl acetate under the catalytic conditions, thus avoiding the catalyst poisoning via iridium-mediated decarbonylation of acetaldehyde.
The selective synthesis of Z-alkenes in alkyne semihydrogenation relies on the reactivity difference of the catalysts toward the starting materials and the products. Here we report Z-selective semihydrogenation of alkynes with ethanol via a coordination-induced ionic monohydride mechanism. The EtOH-coordination-driven Cl– dissociation in a pincer Ir(III) hydridochloride complex (NCP)IrHCl (1) forms a cationic monohydride, [(NCP)IrH(EtOH)]+Cl–, that reacts selectively with alkynes over the corresponding Z-alkenes, thereby overcoming competing thermodynamically dominant alkene Z–E isomerization and overreduction. The challenge for establishing a catalytic cycle, however, lies in the alcoholysis step; the reaction of the alkyne insertion product (NCP)IrCl(vinyl) with EtOH does occur, but very slowly. Surprisingly, the alcoholysis does not proceed via direct protonolysis of the Ir–C(vinyl) bond. Instead, mechanistic data are consistent with an anion-involved alcoholysis pathway involving ionization of (NCP)IrCl(vinyl) via EtOH-for-Cl substitution and reversible protonation of Cl– ion with an Ir(III)-bound EtOH, followed by β-H elimination of the ethoxy ligand and C(vinyl)–H reductive elimination. The use of an amine is key to the monohydride mechanism by promoting the alcoholysis. The 1–amine–EtOH catalytic system exhibits an unprecedented level of substrate scope, generality, and compatibility, as demonstrated by Z-selective reduction of all alkyne classes, including challenging enynes and complex polyfunctionalized molecules. Comparison with a cationic monohydride complex bearing a noncoordinating BArF– ion elucidates the beneficial role of the Cl– ion in controlling the stereoselectivity, and comparison between 1–amine–EtOH and 1–NaOtBu–EtOH underscores the fact that this base variable, albeit in catalytic amounts, leads to different mechanisms and consequently different stereoselectivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.