Quantum computing is among the most promising emerging techniques to solve problems that are computationally intractable on classical hardware. A large body of existing works focus on using variational quantum algorithms on the gate level for machine learning tasks, such as the variational quantum circuit (VQC). However, VQC has limited flexibility and expressibility due to limited number of parameters, e.g. only one parameter can be trained in one rotation gate. On the other hand, we observe that quantum pulses are lower than quantum gates in the stack of quantum computing and offers more control parameters. Inspired by the promising performance of VQC, in this paper we propose variational quantum pulses (VQP), a novel paradigm to directly train quantum pulses for learning tasks. The proposed method manipulates variational quantum pulses by pulling and pushing the amplitudes of pulses in an optimization framework. Similar to variational quantum algorithms, our framework to train pulses maintains the robustness to noise on Noisy Intermediate-Scale Quantum (NISQ) computers. In an example task of binary classification, VQP learning achieves 30% and 40% higher accuracy compared with VQC learning on the qiskit noise simulatosr (FakeMachines) and ibmq-jarkata, respectively, demonstrating its effectiveness and feasibility. Stability for VQP to obtain reliable results has also been verified in the presence of noise.
No abstract
Variational quantum algorithms (VQAs) have demonstrated great potentials in the NISQ era. In the workflow of VQA, the parameters of ansatz are iteratively updated to approximate the desired quantum states. We have seen various efforts to draft better ansatz with less gates. Some works consider the physical meaning of the underlying circuits, while others adopt the ideas of neural architecture search (NAS) for ansatz generator. However, these designs do not exploit full advantages of VQA. Because most techniques are targeting gate ansatz, and the parameters are usually rotation angles of the gates. In quantum computers, the gate ansatz will eventually be transformed into control signals such as microwave pulses on transmons. And the control pulses need elaborate calibration to minimize the errors such as over-rotation and under-rotation. In the case of VQAs, this procedure will introduce redundancy, but the variational properties of VQAs can naturally handle problems of overrotation and under-rotation by updating the amplitude and frequency parameters. Thererfore, we propose PAN, a native-pulse ansatz generator framework for VQAs. We generate native-pulse ansatz with trainable parameters for amplitudes and frequencies. In our proposed PAN, we are tuning parametric pulses, which are natively supported on NISQ computers. Considering that parameter-shift rules do not hold for native-pulse ansatz, we need to deploy non-gradient optimizers. To constrain the number of parameters sent to the optimizer, we adopt a progressive way to generate our native-pulse ansatz. Experiments are conducted on both simulators and quantum devices to validate our methods. When adopted on NISQ machines, PAN obtained improved the performance with decreased latency by an average of 86%. PAN is able to achieve 99.336% and 96.482% accuracy for VQE tasks on H2 and HeH+ respectively, even with considerable noises in NISQ machines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.