During cardiac surgery, the excessive or insufficient contact force between the tip of catheter and heart tissue will lead to the cardiac penetration or noneffective ablative lesion. Usually, the surgeon can only estimate the force at the distal end roughly from their experience by operating the catheter's proximal handle. In this paper, we design a fiber Bragg grating-based triaxial force sensor with parallel flexure hinges to sense the contact force. The proposed mechanism integrated with parallel flexure hinges is capable of achieving an excellent lateral and axial stiffness balance to guarantee the resolution at each direction with the same order of magnitude. The mathematical model is built to design a suitable stiffness configuration and validate the design reasonability. The model-based and model-free methods are adopted to decouple lateral and axial force components. Experimental results demonstrate that the developed 8 French size force sensor can successfully achieve the triaxial force prediction with <1 g resolution using both decoupling methods. And the model-free method can accomplish a higher accuracy with RMS error <1% of full scale of [-100 g, 100 g] along the lateral direction and [0 g, 100 g] along the axial compression direction.
In order to improve the resolution of deposition patterns and produce the required deposition morphology of functional nanomaterials formed by electrohydrodynamic jet (E‐jet) printing, it is vital to control the evolution of the coffee ring during droplet evaporation. Herein, the mechanism of the coffee ring effect at the nanoscale is studied, which will enable to realize a high‐resolution deposition pattern of Ag nanoparticles (AgNPs) formed by E‐jet printing. Under different substrate treatment conditions, the morphologies of the AgNP solution deposits with various chemical compositions are examined by atomic force microscopy for precise statistics and analysis. Thus, the formation mechanism and 3D morphology parameters of the deposition pattern generated by the coffee ring effect are studied in detail at the nanoscale. Structures with different morphologies are controllably fabricated, and a ring with a line width of the order of sub‐50 nm is obtained. This fabrication process for the nanodeposition pattern is suitable for other types of nanomaterials as well; therefore, this work will have immense potential and significance for functional material patterning, nanodevice fabrication, and flexible electronic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.