Keratin IF (KRT) and keratin-associated protein genes encode the majority of wool and hair proteins. We have identified cDNA sequences representing nine novel sheep KRT genes, increasing the known active genes from eight to 17, a number comparable to that in the human. However, the absence of KRT37 in the type I family and the discovery of type II KRT87 in sheep exemplify species-specific compositional differences in hair KRT genes. Phylogenetic analysis of hair KRT genes within type I and type II families in the sheep, cattle and human genomes revealed a high degree of consistency in their sequence conservation and grouping. However, there were differences in the fibre compartmentalisation and keratinisation zones for the expression of six ovine KRT genes compared with their human orthologs. Transcripts of three genes (KRT40, KRT82 and KRT84) were only present in the fibre cuticle. KRT32, KRT35 and KRT85 were expressed in both the cuticle and the fibre cortex. The remaining 11 genes (KRT31, KRT33A, KRT33B, KRT34, KRT36, KRT38-39, KRT81, KRT83 and KRT86-87) were expressed only in the cortex. Species-specific differences in the expressed keratin gene sets, their relative expression levels and compartmentalisation are discussed in the context of their underlying roles in wool and hair developmental programmes and the distinctive characteristics of the fibres produced.
Most protein in hair and wool is of two broad types: keratin intermediate filament-forming proteins (commonly known as keratins) and keratin-associated proteins (KAPs). Keratin nomenclature was reviewed in 2006, but the KAP nomenclature has not been revised since 1993. Recently there has been an increase in the number of KAP genes (KRTAPs) identified in humans and other species, and increasingly reports of variation in these genes. We therefore propose that an updated naming system is needed to accommodate the complexity of the KAPs. It is proposed that the system is founded in the previous nomenclature, but with the abbreviation sp-KAPm-nL*x for KAP proteins and sp-KRTAPm-n(p/L)*x for KAP genes. In this system “sp” is a unique letter-based code for different species as described by the protein knowledge-based UniProt. “m” is a number identifying the gene or protein family, “n” is a constituent member of that family, “p” signifies a pseudogene if present, “L” if present signifies “like” and refers to a temporary “place-holder” until the family is confirmed and “x” signifies a genetic variant or allele. We support the use of non-italicised text for the proteins and italicised text for the genes.This nomenclature is not that different to the existing system, but it includes species information and also describes genetic variation if identified, and hence is more informative. For example, GenBank sequence JN091630 would historically have been named KRTAP7-1 for the gene and KAP7-1 for the protein, but with the proposed nomenclature would be SHEEP-KRTAP7-1*A and SHEEP-KAP7-1*A for the gene and protein respectively. This nomenclature will facilitate more efficient storage and retrieval of data and define a common language for the KAP proteins and genes from all mammalian species.
Keratin-associated proteins (KAPs) are a major component of wool and other keratin-containing tissues. While four KAP1-n proteins have been identified in sheep, only three genes have been described encoding KAP1-1, KAP1-3 and KAP1-4. Here, we used a sequence conserved across the known KAP1-n genes to search the inaugural Ovine Genome Sequence (v1.0) and identified a new KAP1-n sequence on chromosome 11. PCR amplification of this sequence revealed an open reading frame of 474-bp that putatively encodes a polypeptide sequence very similar to the previously described ovine KAP1-2 protein and suggests that the newly identified sequence represents the previously unidentified KAP1-2 gene (KRTAP1-2). Its expression in skin was confirmed by PCR, and the mRNA was localized to the cortex of the mid-keratinization zone of a growing wool fibre using a gene-specific probe and in situ hybridization. PCR-SSCP analysis of KRTAP1-2 revealed nine unique banding patterns representing nine different DNA sequences. One sequence was identical to, and the other eight were homologous to, the sequence identified above, suggesting that they were allelic variants of ovine KRTAP1-2. There were ten single nucleotide substitutions identified, although only three of these were non-synonymous and would potentially result in amino acid changes. The variation identified here may influence the expression or protein structure of KAP1-2 and consequently wool structure and wool traits.
Keratin associated proteins (KAPs) are a class of proteins that associate with keratin intermediate filament proteins through disulphide linkages to give fibres such as hair and wool their unique properties. Up to 90 proteins from some 25 families have been identified and this does not include polymorphic variants of individual proteins within these families. The existence of this diverse group of proteins has been known for some 75 years but, despite this, there is still no universally accepted nomenclature for them. This paper sets out the case for revising the current system to deal with this nomenclature issue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.