Background and AimsSanqi ginseng (Panax notoginseng) growth is often hampered by replant failure. In this study, we aimed to examine the role of autotoxicity in Sanqi replant failures and assess the role of ginsenosides in autotoxicity.MethodsThe autotoxicities were measured using seedling emergence bioassays and root cell vigor staining. The ginsenosides in the roots, soils, and root exudates were identified with HPLC-MS.ResultsThe seedling emergence and survival rate decreased significantly with the continuous number of planting years from one to three years. The root exudates, root extracts, and extracts from consecutively cultivated soils also showed significant autotoxicity against seedling emergence and growth. Ginsenosides, including R1, Rg1, Re, Rb1, Rb3, Rg2, and Rd, were identified in the roots and consecutively cultivated soil. The ginsenosides, Rg1, Re, Rg2, and Rd, were identified in the root exudates. Furthermore, the ginsenosides, R1, Rg1, Re, Rg2, and Rd, caused autotoxicity against seedling emergence and growth and root cell vigor at a concentration of 1.0 µg/mL.ConclusionOur results demonstrated that autotoxicity results in replant failure of Sanqi ginseng. While Sanqi ginseng consecutively cultivated, some ginsenosides can accumulate in rhizosphere soils through root exudates or root decomposition, which impedes seedling emergence and growth.
This research was undertaken in order to characterize the chemical compositions and evaluate the antioxidant activities of essential oils obtained from different parts of the Origanum vulgare L. It is a medicinal plant used in traditional Chinese medicine for the treatment of heat stroke, fever, vomiting, acute gastroenteritis, and respiratory disorders. The chemical compositions of the three essential oils from different parts of the oregano (leaves-flowers, stems, and roots) were identified by gas chromatography-mass spectrometry (GC-MS). The antioxidant activity of each essential oil was assessed using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay and reducing the power test. Among the essential oils from different parts of the oregano, the leafflower oils have the best antioxidant activities, whereas the stem oils are the worst. The results of the DPPH free radical scavenging assay showed that the half maximal inhibitory concentration (IC 50 ) values of the essential oils were (0.332±0.040) mg/ml (leavesflowers), (0.357±0.031) mg/ml (roots), and (0.501± 0.029) mg/ml (stems), respectively. Interestingly, the results of reducing the power test also revealed that when the concentration exceeded 1.25 mg/ml, the leaf-flower oils had the highest reducing power; however, the stem oils were the lowest.
Background To investigate the therapeutic effect of intercellular adhesion molecule (ICAM)-1-modified mesenchymal stem cells (MSCs) in a mouse model of inflammatory bowel disease (IBD) induced by dextran sulfate sodium. Methods Primary MSCs and ICAM-1-overexpressing MSCs (C3 cells) were generated in vitro. The IBD mouse model was induced with drinking water containing dextran sulfate sodium for 7 days. For stem cell therapy, mice were randomly assigned to six experimental groups: the control group, IBD group, primary MSC group, C3 group, C3-vector group, and C3-ICAM-1 group. Mice were given a single injection of 1 × 10 6 primary MSCs or gene-modified MSCs via the tail vein on day 3 of DDS administration. The general conditions of the mice in each group were observed. Additionally, the pathological changes in the colon were observed and scored. Primary MSCs and gene-modified MSCs were stained with the fluorescent dye CM-DIL before injection into the tail vein of mice. The distribution of infused cells in IBD mice was observed in frozen sections. Mechanistically, the polarization of Th1, Th2, Th17, and regulatory T cells (Tregs) in the spleen was determined by flow cytometry. Moreover, the mRNA expression levels of IBD-related immune factors in splenocytes were measured by quantitative PCR. Results A single injection of MSCs promoted general recovery and reduced pathological damage in IBD mice. Additionally, ICAM-1-overexpressing MSCs had stronger therapeutic effects than ICAM-1 low MSCs. Furthermore, the in vivo distribution analysis results indicated that a higher number of ICAM-1-overexpressing MSCs homed to the colon and spleen of IBD mice. Moreover, the delivery of ICAM-1 overexpressing MSCs decreased the numbers of Th1 and Th17 cells but increased the number of Tregs in the spleen of IBD mice. The quantitative PCR analysis results revealed that an infusion of ICAM-1-overexpressing MSCs influenced the expression of spleen-derived immune factors by remarkably reducing the mRNA levels of IFN-γ and IL-17A and increasing the mRNA level of Foxp3. Conclusions Our results demonstrate that ICAM-1-modified mesenchymal stem cells (MSCs) remarkably alleviate inflammatory damage in IBD mice by promoting MSC homing to the target and immune organs. The findings suggest that ICAM-1 is required to maintain the therapeutic effects of MSCs in IBD treatment and identified a novel role of ICAM-1 in inflammatory diseases. Electronic supplementary material The online version of this article (10.1186/s13287-019-1384-9) contains supplementary material, which is available to authorized users.
Multilocular trait has recently attracted considerable attention for its potential to increase yield. Our previous studies indicated that two genes (Bjln1 and Bjln2) are responsible for multilocular siliques in Brassica juncea and the Bjln1 gene has been delimited to a 208-kb region. In present study, the Bjln1 gene was successfully isolated using the map-based cloning method. Complementation test indicated that the BjuA07.CLV1 (equivalent to BjLn1) could rescue the multilocular phenotype and generate bilocular siliques. Two amino acids changes at positions 28 and 63 in BjuA07.clv1 as well as a 702-bp deletion in its promoter have been proved to affect the carpel numbers. Microscopic analyses suggested that BjuA07.CLV1 is involved in the maintenance of shoot and floral meristem size. The expression level of BjuA07.clv1 was significantly reduced in the SAM. Furthermore, WUS, CLV2, CLV3, RPK2 and POL, key genes in the CLV/WUS signal pathway, showed lower expression level in the multilocular plants. These data suggest that the mutations in the CDS and promoter of BjuA07.clv1 reduced its function and expression level, which disturbed CLV/WUS signal pathway, thereby leading to the enlargement of the shoot and floral meristem and resulting in the multilocular siliques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.