To accurately quantify gene expression using quantitative PCR amplification, it is vital that one or more ideal internal control genes are used to normalize the samples to be compared. Ideally, the expression level of those internal control genes should vary as little as possible between tissues, developmental stages and environmental conditions. In this study, 32 candidate genes for internal control were obtained from the analysis of nine independent experiments which included 333 Affymetrix GeneChip Wheat Genome arrays. Expression levels of the selected genes were then evaluated by quantitative real-time PCR with cDNA samples from different tissues, stages of development and environmental conditions. Finally, fifteen novel internal control genes were selected and their respective expression profiles were compared using NormFinder, geNorm, Pearson correlation coefficients and the twofold-change method. The novel internal control genes from this study were compared with thirteen traditional ones for their expression stability. It was observed that seven of the novel internal control genes were better than the traditional ones in expression stability under all the tested cDNA samples. Among the traditional internal control genes, the elongation factor 1-alpha exhibited strong expression stability, whereas the 18S rRNA, Alpha-tubulin, Actin and GAPDH genes had very poor expression stability in the range of wheat samples tested. Therefore, the use of the novel internal control genes for normalization should improve the accuracy and validity of gene expression analysis.
Flavonoids are plant secondary metabolites that contribute to the adaptation of plants to environmental stresses, including resistance to abiotic and biotic stress. Flavonoids are also beneficial for human health and depress the progression of some chronic diseases. The biosynthesis of flavonoids, which belong to a large family of phenolic compounds, is a complex metabolic process with many pathways that produce different metabolites, controlled by key enzymes. There is limited knowledge about the composition, biosynthesis and regulation of flavonoids in cereals. Improved understanding of the accumulation of flavonoids in cereal grains would help to improve human nutrition through these staple foods. The biosynthesis of flavonoids, scope for altering the flavonoid composition in cereal crops and benefits for human nutrition are reviewed here.
Pre-harvest sprouting (PHS), the germination of grain before harvest, is a serious problem resulting in wheat yield and quality losses.Here, we mapped the PHS resistance gene PHS-3D from synthetic hexaploid wheat to a 2.4 Mb presence-absence variation (PAV) region and found that its resistance effect was attributed to the pleiotropic Myb10-D by integrated omics and functional analyses.Three haplotypes were detected in this PAV region among 262 worldwide wheat lines and 16 Aegilops tauschii, and the germination percentages of wheat lines containing Myb10-D was approximately 40% lower than that of the other lines. Transcriptome and metabolome profiling indicated that Myb10-D affected the transcription of genes in both the flavonoid and abscisic acid (ABA) biosynthesis pathways, which resulted in increases in flavonoids and ABA in transgenic wheat lines. Myb10-D activates 9-cis-epoxycarotenoid dioxygenase (NCED) by biding the secondary wall MYB-responsive element (SMRE) to promote ABA biosynthesis in early wheat seed development stages.We revealed that the newly discovered function of Myb10-D confers PHS resistance by enhancing ABA biosynthesis to delay germination in wheat. The PAV harboring Myb10-D associated with grain color and PHS will be useful for understanding and selecting white grained PHS resistant wheat cultivars.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.