Many researchers studied DQN (Deep Q-Networks) to train a game AI to beat human players, while we trained an improved AI to reversely modify properties of 3D video games. Our ultimate objective is to improve automatic debug for software and cloud services. However, the problem that reversely discovers properties in online 3D Video Games in an automatic way has not been studied yet. Therefore, related special difficulties are first discussed in the paper. RMDQN (a Reverse Method based on our active Deep Q-Networks) is proposed to deal with the problem, and an active DQN is invented to make the reverse procedure automatic and intelligent. The action engine of RMDQN is able to control any operational game object like a player is playing, which makes automatic debug possible. A video demonstration is provided to show the result of reversely modifying game properties by our method. It was proved that our method can improve debug technology in 3D video games, and it will be applied in cloud services with few modifications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.